483 lines
15 KiB
C++
483 lines
15 KiB
C++
|
/**
|
||
|
* The MicroBit Fiber scheduler.
|
||
|
*
|
||
|
* This lightweight, non-preemptive scheduler provides a simple threading mechanism for two main purposes:
|
||
|
*
|
||
|
* 1) To provide a clean abstraction for application languages to use when building async behaviour (callbacks).
|
||
|
* 2) To provide ISR decoupling for Messagebus events generted in an ISR context.
|
||
|
*/
|
||
|
|
||
|
#include "MicroBit.h"
|
||
|
|
||
|
/*
|
||
|
* Statically allocated values used to create and destroy Fibers.
|
||
|
* required to be defined here to allow persistence during context switches.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Scheduler state.
|
||
|
*/
|
||
|
|
||
|
Fiber *currentFiber = NULL; // The context in which the current fiber is executing.
|
||
|
Fiber *runQueue = NULL; // The list of runnable fibers.
|
||
|
Fiber *sleepQueue = NULL; // The list of blocked fibers waiting on a fiber_sleep() operation.
|
||
|
Fiber *waitQueue = NULL; // The list of blocked fibers waiting on an event.
|
||
|
Fiber *idle = NULL; // IDLE task - performs a power efficient sleep, and system maintenance tasks.
|
||
|
Fiber *fiberPool = NULL; // Pool of unused fibers, just waiting for a job to do.
|
||
|
|
||
|
Cortex_M0_TCB *emptyContext = NULL; // Initialized context for fiber entry state.
|
||
|
|
||
|
/*
|
||
|
* Time since power on. Measured in milliseconds.
|
||
|
* When stored as an unsigned long, this gives us approx 50 days between rollover, which is ample. :-)
|
||
|
*/
|
||
|
unsigned long ticks = 0;
|
||
|
|
||
|
uint8_t fiber_flags = 0;
|
||
|
|
||
|
/**
|
||
|
* Utility function to add the currenty running fiber to the given queue.
|
||
|
* Perform a simple add at the head, to avoid complexity,
|
||
|
* Queues are normally very short, so maintaining a doubly linked, sorted list typically outweighs the cost of
|
||
|
* brute force searching.
|
||
|
*
|
||
|
* @param f The fiber to add to the queue
|
||
|
* @param queue The run queue to add the fiber to.
|
||
|
*/
|
||
|
void queue_fiber(Fiber *f, Fiber **queue)
|
||
|
{
|
||
|
__disable_irq();
|
||
|
|
||
|
f->queue = queue;
|
||
|
f->next = *queue;
|
||
|
f->prev = NULL;
|
||
|
|
||
|
if(*queue != NULL)
|
||
|
(*queue)->prev = f;
|
||
|
|
||
|
*queue = f;
|
||
|
|
||
|
__enable_irq();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Utility function to the given fiber from whichever queue it is currently stored on.
|
||
|
* @param f the fiber to remove.
|
||
|
*/
|
||
|
void dequeue_fiber(Fiber *f)
|
||
|
{
|
||
|
__disable_irq();
|
||
|
|
||
|
if (f->prev != NULL)
|
||
|
f->prev->next = f->next;
|
||
|
else
|
||
|
*(f->queue) = f->next;
|
||
|
|
||
|
if(f->next)
|
||
|
f->next->prev = f->prev;
|
||
|
|
||
|
f->next = NULL;
|
||
|
f->prev = NULL;
|
||
|
f->queue = NULL;
|
||
|
|
||
|
__enable_irq();
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Initialises the Fiber scheduler.
|
||
|
* Creates a Fiber context around the calling thread, and adds it to the run queue as the current thread.
|
||
|
*
|
||
|
* This function must be called once only from the main thread, and before any other Fiber operation.
|
||
|
*/
|
||
|
void scheduler_init()
|
||
|
{
|
||
|
// Create a new fiber context
|
||
|
currentFiber = new Fiber();
|
||
|
currentFiber->stack_bottom = (uint32_t) malloc(FIBER_STACK_SIZE);
|
||
|
currentFiber->stack_top = ((uint32_t) currentFiber->stack_bottom) + FIBER_STACK_SIZE;
|
||
|
|
||
|
// Add ourselves to the run queue.
|
||
|
queue_fiber(currentFiber, &runQueue);
|
||
|
|
||
|
// Build a fiber context around the current thread.
|
||
|
swap_context(¤tFiber->tcb, ¤tFiber->tcb, currentFiber->stack_top, currentFiber->stack_top);
|
||
|
|
||
|
// Create the IDLE task. This will actually scheduk the IDLE task, but it will immediately yeld back to us.
|
||
|
// Remove it from the run queue though, as IDLE is a special case.
|
||
|
idle = create_fiber(idle_task);
|
||
|
dequeue_fiber(idle);
|
||
|
|
||
|
// Flag that we now have a scheduler running
|
||
|
uBit.flags |= MICROBIT_FLAG_SCHEDULER_RUNNING;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Timer callback. Called from interrupt context, once every FIBER_TICK_PERIOD_MS milliseconds.
|
||
|
* Simply checks to determine if any fibers blocked on the sleep queue need to be woken up
|
||
|
* and made runnable.
|
||
|
*/
|
||
|
void scheduler_tick()
|
||
|
{
|
||
|
Fiber *f = sleepQueue;
|
||
|
Fiber *t;
|
||
|
|
||
|
// increment our real-time counter.
|
||
|
ticks += FIBER_TICK_PERIOD_MS;
|
||
|
|
||
|
// Check the sleep queue, and wake up any fibers as necessary.
|
||
|
while (f != NULL)
|
||
|
{
|
||
|
t = f->next;
|
||
|
|
||
|
if (ticks >= f->context)
|
||
|
{
|
||
|
// Wakey wakey!
|
||
|
dequeue_fiber(f);
|
||
|
queue_fiber(f,&runQueue);
|
||
|
}
|
||
|
|
||
|
f = t;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Event callback. Called from the message bus whenever an event is raised.
|
||
|
* Checks to determine if any fibers blocked on the wait queue need to be woken up
|
||
|
* and made runnable due to the event.
|
||
|
*/
|
||
|
void scheduler_event(MicroBitEvent evt)
|
||
|
{
|
||
|
Fiber *f = waitQueue;
|
||
|
Fiber *t;
|
||
|
|
||
|
// Check the wait queue, and wake up any fibers as necessary.
|
||
|
while (f != NULL)
|
||
|
{
|
||
|
t = f->next;
|
||
|
|
||
|
// extract the event data this fiber is blocked on.
|
||
|
uint16_t id = f->context & 0xFF;
|
||
|
uint16_t value = (f->context & 0xFF00) >> 16;
|
||
|
|
||
|
if ((id == MICROBIT_ID_ANY || id == evt.source) && (value == MICROBIT_EVT_ANY || value == evt.value))
|
||
|
{
|
||
|
// Wakey wakey!
|
||
|
dequeue_fiber(f);
|
||
|
queue_fiber(f,&runQueue);
|
||
|
}
|
||
|
|
||
|
f = t;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Blocks the calling thread for the given period of time.
|
||
|
* The calling thread will be immediatley descheduled, and placed onto a
|
||
|
* wait queue until the requested amount of time has elapsed.
|
||
|
*
|
||
|
* n.b. the fiber will not be be made runnable until after the elasped time, but there
|
||
|
* are no guarantees precisely when the fiber will next be scheduled.
|
||
|
*
|
||
|
* @param t The period of time to sleep, in milliseconds.
|
||
|
*/
|
||
|
void fiber_sleep(unsigned long t)
|
||
|
{
|
||
|
// Calculate and store the time we want to wake up.
|
||
|
currentFiber->context = ticks + t;
|
||
|
|
||
|
// Remove ourselve from the run queue
|
||
|
dequeue_fiber(currentFiber);
|
||
|
|
||
|
// Add ourselves to the sleep queue. We maintain strict ordering here to reduce lookup times.
|
||
|
queue_fiber(currentFiber, &sleepQueue);
|
||
|
|
||
|
// Finally, enter the scheduler.
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Blocks the calling thread until the specified event is raised.
|
||
|
* The calling thread will be immediatley descheduled, and placed onto a
|
||
|
* wait queue until the requested event is received.
|
||
|
*
|
||
|
* n.b. the fiber will not be be made runnable until after the event is raised, but there
|
||
|
* are no guarantees precisely when the fiber will next be scheduled.
|
||
|
*
|
||
|
* @param id The ID field of the event to listen for (e.g. MICROBIT_ID_BUTTON_A)
|
||
|
* @param value The VALUE of the event to listen for (e.g. MICROBIT_BUTTON_EVT_CLICK)
|
||
|
*/
|
||
|
void fiber_wait_for_event(uint16_t id, uint16_t value)
|
||
|
{
|
||
|
// Encode the event data in the context field. It's handy having a 32 bit core. :-)
|
||
|
currentFiber->context = value << 16 | id;
|
||
|
|
||
|
// Remove ourselve from the run queue
|
||
|
dequeue_fiber(currentFiber);
|
||
|
|
||
|
// Add ourselves to the sleep queue. We maintain strict ordering here to reduce lookup times.
|
||
|
queue_fiber(currentFiber, &waitQueue);
|
||
|
|
||
|
// Finally, enter the scheduler.
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
|
||
|
Fiber *getFiberContext()
|
||
|
{
|
||
|
Fiber *f;
|
||
|
|
||
|
__disable_irq();
|
||
|
|
||
|
if (fiberPool != NULL)
|
||
|
{
|
||
|
f = fiberPool;
|
||
|
dequeue_fiber(f);
|
||
|
|
||
|
// dequeue_fiber() exits with irqs enablesd, so no need to do this again!
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
__enable_irq();
|
||
|
|
||
|
f = new Fiber();
|
||
|
|
||
|
if (f == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
f->stack_bottom = (uint32_t) malloc(FIBER_STACK_SIZE);
|
||
|
f->stack_top = f->stack_bottom + FIBER_STACK_SIZE;
|
||
|
|
||
|
if (f->stack_bottom == NULL)
|
||
|
{
|
||
|
delete f;
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return f;
|
||
|
}
|
||
|
|
||
|
void launch_new_fiber()
|
||
|
{
|
||
|
// Launch into the entry point, now we're in the correct context.
|
||
|
//uint32_t ep = currentFiber->stack_bottom;
|
||
|
uint32_t ep = *((uint32_t *)(currentFiber->stack_bottom + 0));
|
||
|
uint32_t cp = *((uint32_t *)(currentFiber->stack_bottom + 4));
|
||
|
|
||
|
// Execute the thread's entrypoint
|
||
|
(*(void(*)())(ep))();
|
||
|
|
||
|
// Execute the thread's completion routine;
|
||
|
(*(void(*)())(cp))();
|
||
|
|
||
|
// If we get here, then the completion routine didn't recycle the fiber
|
||
|
// so do it anyway. :-)
|
||
|
release_fiber();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new Fiber, and launches it.
|
||
|
*
|
||
|
* @param entry_fn The function the new Fiber will begin execution in.
|
||
|
* @param completion_fn The function called when the thread completes execution of entry_fn.
|
||
|
* @return The new Fiber.
|
||
|
*/
|
||
|
Fiber *create_fiber(void (*entry_fn)(void), void (*completion_fn)(void))
|
||
|
{
|
||
|
// Validate our parameters.
|
||
|
if (entry_fn == NULL || completion_fn == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
// Allocate a TCB from the new fiber. This will come from the tread pool if availiable,
|
||
|
// else a new one will be allocated on the heap.
|
||
|
Fiber *newFiber = getFiberContext();
|
||
|
|
||
|
// If we're out of memory, there's nothing we can do.
|
||
|
if (newFiber == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
*((uint32_t *)newFiber->stack_bottom) = (uint32_t) entry_fn;
|
||
|
*((uint32_t *)(newFiber->stack_bottom+4)) = (uint32_t) completion_fn;
|
||
|
|
||
|
// Use cache fiber state if we have it. This is faster, and safer if we're called from
|
||
|
// an interrupt context.
|
||
|
if (emptyContext != NULL)
|
||
|
{
|
||
|
memcpy(&newFiber->tcb, emptyContext, sizeof(Cortex_M0_TCB));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Otherwise, initialize the TCB from the current context.
|
||
|
save_context(&newFiber->tcb, newFiber->stack_top);
|
||
|
|
||
|
// Assign the new stack pointer and entry point.
|
||
|
newFiber->tcb.SP = CORTEX_M0_STACK_BASE;
|
||
|
newFiber->tcb.LR = (uint32_t) &launch_new_fiber;
|
||
|
|
||
|
// Store this context for later use.
|
||
|
emptyContext = (Cortex_M0_TCB *) malloc (sizeof(Cortex_M0_TCB));
|
||
|
memcpy(emptyContext, &newFiber->tcb, sizeof(Cortex_M0_TCB));
|
||
|
}
|
||
|
|
||
|
// Add new fiber to the run queue.
|
||
|
queue_fiber(newFiber, &runQueue);
|
||
|
|
||
|
return newFiber;
|
||
|
}
|
||
|
|
||
|
void launch_new_fiber_param()
|
||
|
{
|
||
|
// Launch into the entry point, now we're in the correct context.
|
||
|
uint32_t ep = *((uint32_t *)(currentFiber->stack_bottom + 0));
|
||
|
uint32_t pm = *((uint32_t *)(currentFiber->stack_bottom + 4));
|
||
|
uint32_t cp = *((uint32_t *)(currentFiber->stack_bottom + 8));
|
||
|
|
||
|
// Execute the thread's entry routine.
|
||
|
(*(void(*)(void *))(ep))((void *)pm);
|
||
|
|
||
|
// Execute the thread's completion routine.
|
||
|
// Execute the thread's entry routine.
|
||
|
(*(void(*)(void *))(cp))((void *)pm);
|
||
|
|
||
|
// If we get here, then recycle the fiber context.
|
||
|
release_fiber((void *)pm);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a new parameterised Fiber, and launches it.
|
||
|
*
|
||
|
* @param entry_fn The function the new Fiber will begin execution in.
|
||
|
* @param param an untyped parameter passed into the entry_fn anf completion_fn.
|
||
|
* @param completion_fn The function called when the thread completes execution of entry_fn.
|
||
|
* @return The new Fiber.
|
||
|
*/
|
||
|
Fiber *create_fiber(void (*entry_fn)(void *), void *param, void (*completion_fn)(void *))
|
||
|
{
|
||
|
// Validate our parameters.
|
||
|
if (entry_fn == NULL || completion_fn == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
// Allocate a TCB from the new fiber. This will come from the tread pool if availiable,
|
||
|
// else a new one will be allocated on the heap.
|
||
|
Fiber *newFiber = getFiberContext();
|
||
|
|
||
|
// If we're out of memory, there's nothing we can do.
|
||
|
if (newFiber == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
*((uint32_t *)newFiber->stack_bottom) = (uint32_t) entry_fn;
|
||
|
*((uint32_t *)(newFiber->stack_bottom+4)) = (uint32_t) param;
|
||
|
*((uint32_t *)(newFiber->stack_bottom+8)) = (uint32_t) completion_fn;
|
||
|
|
||
|
// Use cache fiber state. This is safe, as the empty context is always created in the non-paramterised
|
||
|
// version of create_fiber before we're ever called.
|
||
|
memcpy(&newFiber->tcb, emptyContext, sizeof(Cortex_M0_TCB));
|
||
|
|
||
|
// Assign the link register to refer to the thread entry point in THIS function.
|
||
|
newFiber->tcb.LR = (uint32_t) &launch_new_fiber_param;
|
||
|
|
||
|
// Add new fiber to the run queue.
|
||
|
queue_fiber(newFiber, &runQueue);
|
||
|
|
||
|
return newFiber;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Exit point for parameterised fibers.
|
||
|
* A wrapper around release_fiber() to enable transparent operaiton.
|
||
|
*/
|
||
|
void release_fiber(void *param)
|
||
|
{
|
||
|
release_fiber();
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Exit point for all fibers.
|
||
|
* Any fiber reaching the end of its entry function will return here for recycling.
|
||
|
*/
|
||
|
void release_fiber(void)
|
||
|
{
|
||
|
// Remove ourselves form the runqueue.
|
||
|
dequeue_fiber(currentFiber);
|
||
|
queue_fiber(currentFiber, &fiberPool);
|
||
|
|
||
|
// Find something else to do!
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calls the Fiber scheduler.
|
||
|
* The calling Fiber will likely be blocked, and control given to another waiting fiber.
|
||
|
* Call this to yield control of the processor when you have nothing more to do.
|
||
|
*/
|
||
|
void schedule()
|
||
|
{
|
||
|
// Just round robin for now!
|
||
|
Fiber *oldFiber = currentFiber;
|
||
|
|
||
|
// OK - if we've nothing to do, then run the IDLE task (power saving sleep)
|
||
|
if (runQueue == NULL || fiber_flags & MICROBIT_FLAG_DATA_READ)
|
||
|
currentFiber = idle;
|
||
|
|
||
|
// If the current fiber is on the run queue, round robin.
|
||
|
else if (currentFiber->queue == &runQueue)
|
||
|
currentFiber = currentFiber->next == NULL ? runQueue : currentFiber->next;
|
||
|
|
||
|
// Otherwise, just pick the head of the run queue.
|
||
|
else
|
||
|
currentFiber = runQueue;
|
||
|
|
||
|
// Swap to the context of the chosen fiber, and we're done.
|
||
|
// Don't bother with the overhead of switching if there's only one fiber on the runqueue!
|
||
|
if (currentFiber != oldFiber)
|
||
|
{
|
||
|
// Ensure the stack buffer is large enough to hold the stack Reallocate if necessary.
|
||
|
uint32_t stackDepth;
|
||
|
uint32_t bufferSize;
|
||
|
|
||
|
// Calculate the stack depth.
|
||
|
stackDepth = CORTEX_M0_STACK_BASE - ((uint32_t) __get_MSP());
|
||
|
bufferSize = oldFiber->stack_top - oldFiber->stack_bottom;
|
||
|
|
||
|
// If we're too small, increase our buffer exponentially.
|
||
|
if (bufferSize < stackDepth)
|
||
|
{
|
||
|
while (bufferSize < stackDepth)
|
||
|
bufferSize = bufferSize << 1;
|
||
|
|
||
|
free((void *)oldFiber->stack_bottom);
|
||
|
oldFiber->stack_bottom = (uint32_t) malloc(bufferSize);
|
||
|
oldFiber->stack_top = oldFiber->stack_bottom + bufferSize;
|
||
|
}
|
||
|
|
||
|
// Schedule in the new fiber.
|
||
|
swap_context(&oldFiber->tcb, ¤tFiber->tcb, oldFiber->stack_top, currentFiber->stack_top);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* IDLE task.
|
||
|
* Only scheduled for execution when the runqueue is empty.
|
||
|
* Performs a procressor sleep operation, then returns to the scheduler - most likely after a timer interrupt.
|
||
|
*/
|
||
|
void idle_task()
|
||
|
{
|
||
|
while(1)
|
||
|
{
|
||
|
if (uBit.ble)
|
||
|
uBit.ble->waitForEvent();
|
||
|
else
|
||
|
__WFI();
|
||
|
|
||
|
uBit.systemTasks();
|
||
|
|
||
|
schedule();
|
||
|
}
|
||
|
}
|