2015-08-12 10:53:41 +00:00
|
|
|
#include "MicroBit.h"
|
|
|
|
|
|
|
|
char MICROBIT_BLE_DEVICE_NAME[] = "BBC MicroBit [xxxxx]";
|
2015-08-31 22:25:10 +00:00
|
|
|
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_ENABLED(MICROBIT_BLE_ENABLED) && CONFIG_ENABLED(MICROBIT_BLE_DEVICE_INFORMATION_SERVICE)
|
2015-08-12 10:53:41 +00:00
|
|
|
const char MICROBIT_BLE_MANUFACTURER[] = "The Cast of W1A";
|
|
|
|
const char MICROBIT_BLE_MODEL[] = "Microbit SB2";
|
|
|
|
const char MICROBIT_BLE_SERIAL[] = "SN1";
|
|
|
|
const char MICROBIT_BLE_HARDWARE_VERSION[] = "0.2";
|
|
|
|
const char MICROBIT_BLE_FIRMWARE_VERSION[] = "1.1";
|
|
|
|
const char MICROBIT_BLE_SOFTWARE_VERSION[] = "1.0";
|
2015-08-31 22:25:10 +00:00
|
|
|
#endif
|
2015-08-12 10:53:41 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* custom function for panic for malloc & new due to scoping issue.
|
|
|
|
*/
|
|
|
|
void panic(int statusCode)
|
|
|
|
{
|
|
|
|
uBit.panic(statusCode);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Callback when a BLE GATT disconnect occurs.
|
|
|
|
*/
|
|
|
|
void bleDisconnectionCallback(Gap::Handle_t handle, Gap::DisconnectionReason_t reason)
|
|
|
|
{
|
2015-08-31 22:25:10 +00:00
|
|
|
uBit.ble->startAdvertising();
|
2015-08-12 10:53:41 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor.
|
|
|
|
* Create a representation of a MicroBit device as a global singleton.
|
|
|
|
* @param messageBus callback function to receive MicroBitMessageBus events.
|
|
|
|
*
|
|
|
|
* Exposed objects:
|
|
|
|
* @code
|
|
|
|
* uBit.systemTicker; //the Ticker callback that performs routines like updating the display.
|
|
|
|
* uBit.MessageBus; //The message bus where events are fired.
|
|
|
|
* uBit.display; //The display object for the LED matrix.
|
|
|
|
* uBit.buttonA; //The buttonA object for button a.
|
|
|
|
* uBit.buttonB; //The buttonB object for button b.
|
|
|
|
* uBit.buttonAB; //The buttonAB object for button a+b multi press.
|
|
|
|
* uBit.resetButton; //The resetButton used for soft resets.
|
|
|
|
* uBit.accelerometer; //The object that represents the inbuilt accelerometer
|
|
|
|
* uBit.compass; //The object that represents the inbuilt compass(magnetometer)
|
|
|
|
* uBit.io.P*; //Where P* is P0 to P16, P19 & P20 on the edge connector
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
MicroBit::MicroBit() :
|
|
|
|
flags(0x00),
|
|
|
|
i2c(MICROBIT_PIN_SDA, MICROBIT_PIN_SCL),
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_DISABLED(MICROBIT_DBG)
|
2015-08-12 10:53:41 +00:00
|
|
|
serial(USBTX, USBRX),
|
2015-08-31 22:25:10 +00:00
|
|
|
#endif
|
2015-08-12 10:53:41 +00:00
|
|
|
MessageBus(),
|
|
|
|
display(MICROBIT_ID_DISPLAY, MICROBIT_DISPLAY_WIDTH, MICROBIT_DISPLAY_HEIGHT),
|
|
|
|
buttonA(MICROBIT_ID_BUTTON_A,MICROBIT_PIN_BUTTON_A),
|
|
|
|
buttonB(MICROBIT_ID_BUTTON_B,MICROBIT_PIN_BUTTON_B),
|
|
|
|
buttonAB(MICROBIT_ID_BUTTON_AB,MICROBIT_ID_BUTTON_A,MICROBIT_ID_BUTTON_B),
|
|
|
|
accelerometer(MICROBIT_ID_ACCELEROMETER, MMA8653_DEFAULT_ADDR),
|
|
|
|
compass(MICROBIT_ID_COMPASS, MAG3110_DEFAULT_ADDR),
|
|
|
|
io(MICROBIT_ID_IO_P0,MICROBIT_ID_IO_P1,MICROBIT_ID_IO_P2,
|
|
|
|
MICROBIT_ID_IO_P3,MICROBIT_ID_IO_P4,MICROBIT_ID_IO_P5,
|
|
|
|
MICROBIT_ID_IO_P6,MICROBIT_ID_IO_P7,MICROBIT_ID_IO_P8,
|
|
|
|
MICROBIT_ID_IO_P9,MICROBIT_ID_IO_P10,MICROBIT_ID_IO_P11,
|
|
|
|
MICROBIT_ID_IO_P12,MICROBIT_ID_IO_P13,MICROBIT_ID_IO_P14,
|
|
|
|
MICROBIT_ID_IO_P15,MICROBIT_ID_IO_P16,MICROBIT_ID_IO_P19,
|
|
|
|
MICROBIT_ID_IO_P20)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Post constructor initialisation method.
|
|
|
|
* After *MUCH* pain, it's noted that the BLE stack can't be brought up in a
|
|
|
|
* static context, so we bring it up here rather than in the constructor.
|
|
|
|
* n.b. This method *must* be called in main() or later, not before.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
* @code
|
|
|
|
* uBit.init();
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
void MicroBit::init()
|
|
|
|
{
|
|
|
|
//add the display to the systemComponent array
|
|
|
|
addSystemComponent(&uBit.display);
|
|
|
|
|
|
|
|
//add the compass and accelerometer to the idle array
|
|
|
|
addIdleComponent(&uBit.accelerometer);
|
|
|
|
addIdleComponent(&uBit.compass);
|
2015-08-19 22:35:45 +00:00
|
|
|
addIdleComponent(&uBit.MessageBus);
|
2015-08-12 10:53:41 +00:00
|
|
|
|
|
|
|
// Seed our random number generator
|
|
|
|
seedRandom();
|
|
|
|
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_ENABLED(MICROBIT_BLE_ENABLED)
|
2015-08-12 10:53:41 +00:00
|
|
|
// Start the BLE stack.
|
|
|
|
|
2015-08-31 22:25:10 +00:00
|
|
|
ble = new BLEDevice();
|
2015-08-12 10:53:41 +00:00
|
|
|
ble->init();
|
|
|
|
ble->onDisconnection(bleDisconnectionCallback);
|
2015-08-31 22:25:10 +00:00
|
|
|
|
|
|
|
// Bring up any configured auxiliary services.
|
|
|
|
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_ENABLED(MICROBIT_BLE_DFU_SERVICE)
|
2015-08-12 10:53:41 +00:00
|
|
|
ble_firmware_update_service = new MicroBitDFUService(*ble);
|
2015-08-31 22:25:10 +00:00
|
|
|
|
2015-08-12 10:53:41 +00:00
|
|
|
// Compute our auto-generated MicroBit device name.
|
|
|
|
ble_firmware_update_service->getName(MICROBIT_BLE_DEVICE_NAME+14);
|
2015-08-31 22:25:10 +00:00
|
|
|
#endif
|
|
|
|
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_ENABLED(MICROBIT_BLE_DEVICE_INFORMATION_SERVICE)
|
2015-08-31 22:25:10 +00:00
|
|
|
DeviceInformationService ble_device_information_service (*ble, MICROBIT_BLE_MANUFACTURER, MICROBIT_BLE_MODEL, MICROBIT_BLE_SERIAL, MICROBIT_BLE_HARDWARE_VERSION, MICROBIT_BLE_FIRMWARE_VERSION, MICROBIT_BLE_SOFTWARE_VERSION);
|
|
|
|
#endif
|
|
|
|
|
2015-09-02 11:42:24 +00:00
|
|
|
#if CONFIG_ENABLED(MICROBIT_BLE_EVENT_SERVICE)
|
2015-08-31 22:25:10 +00:00
|
|
|
ble_event_service = new MicroBitEventService(*ble);
|
|
|
|
#endif
|
2015-08-12 10:53:41 +00:00
|
|
|
|
|
|
|
// Setup advertising.
|
|
|
|
ble->accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE);
|
|
|
|
ble->accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)MICROBIT_BLE_DEVICE_NAME, sizeof(MICROBIT_BLE_DEVICE_NAME));
|
|
|
|
ble->setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
|
|
|
|
ble->setAdvertisingInterval(Gap::MSEC_TO_ADVERTISEMENT_DURATION_UNITS(1000));
|
|
|
|
ble->startAdvertising();
|
2015-08-31 22:25:10 +00:00
|
|
|
#endif
|
2015-08-12 10:53:41 +00:00
|
|
|
|
|
|
|
// Start refreshing the Matrix Display
|
|
|
|
systemTicker.attach(this, &MicroBit::systemTick, MICROBIT_DISPLAY_REFRESH_PERIOD);
|
|
|
|
}
|
|
|
|
|
2015-08-14 15:51:45 +00:00
|
|
|
/**
|
|
|
|
* Will reset the micro:bit when called.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
* @code
|
|
|
|
* uBit.reset();
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
void MicroBit::reset()
|
|
|
|
{
|
|
|
|
reset();
|
|
|
|
}
|
|
|
|
|
2015-08-12 10:53:41 +00:00
|
|
|
/**
|
|
|
|
* Delay for the given amount of time.
|
|
|
|
* If the scheduler is running, this will deschedule the current fiber and perform
|
|
|
|
* a power efficent, concurrent sleep operation.
|
|
|
|
* If the scheduler is disabled or we're running in an interrupt context, this
|
|
|
|
* will revert to a busy wait.
|
|
|
|
*
|
|
|
|
* @note Values of 6 and below tend to lose resolution - do you really need to sleep for this short amount of time?
|
|
|
|
*
|
|
|
|
* @param milliseconds the amount of time, in ms, to wait for. This number cannot be negative.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
* @code
|
|
|
|
* uBit.sleep(20); //sleep for 20ms
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
void MicroBit::sleep(int milliseconds)
|
|
|
|
{
|
|
|
|
//sanity check, we can't time travel... (yet?)
|
|
|
|
if(milliseconds < 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (flags & MICROBIT_FLAG_SCHEDULER_RUNNING)
|
|
|
|
fiber_sleep(milliseconds);
|
|
|
|
else
|
|
|
|
wait_ms(milliseconds);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Generate a random number in the given range.
|
|
|
|
* We use a simple Galois LFSR random number generator here,
|
|
|
|
* as a Galois LFSR is sufficient for our applications, and much more lightweight
|
|
|
|
* than the hardware random number generator built int the processor, which takes
|
|
|
|
* a long time and uses a lot of energy.
|
|
|
|
*
|
|
|
|
* KIDS: You shouldn't use this is the real world to generte cryptographic keys though...
|
|
|
|
* have a think why not. :-)
|
|
|
|
*
|
|
|
|
* @param max the upper range to generate a number for. This number cannot be negative
|
|
|
|
* @return A random, natural number between 0 and the max-1. Or MICROBIT_INVALID_VALUE (defined in ErrorNo.h) if max is <= 0.
|
|
|
|
*
|
|
|
|
* Example:
|
|
|
|
* @code
|
|
|
|
* uBit.random(200); //a number between 0 and 199
|
|
|
|
* @endcode
|
|
|
|
*/
|
|
|
|
int MicroBit::random(int max)
|
|
|
|
{
|
|
|
|
//return MICROBIT_INVALID_VALUE if max is <= 0...
|
|
|
|
if(max <= 0)
|
|
|
|
return MICROBIT_INVALID_VALUE;
|
|
|
|
|
|
|
|
// Cycle the LFSR (Linear Feedback Shift Register).
|
|
|
|
// We use an optimal sequence with a period of 2^32-1, as defined by Bruce Schneider here (a true legend in the field!),
|
|
|
|
// For those interested, it's documented in his paper:
|
|
|
|
// "Pseudo-Random Sequence Generator for 32-Bit CPUs: A fast, machine-independent generator for 32-bit Microprocessors"
|
|
|
|
|
|
|
|
randomValue = ((((randomValue >> 31) ^ (randomValue >> 6) ^ (randomValue >> 4) ^ (randomValue >> 2) ^ (randomValue >> 1) ^ randomValue) & 0x0000001) << 31 ) | (randomValue >> 1);
|
|
|
|
return randomValue % max;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Seed our a random number generator (RNG).
|
|
|
|
* We use the NRF51822 in built cryptographic random number generator to seed a Galois LFSR.
|
|
|
|
* We do this as the hardware RNG is relatively high power, and use the the BLE stack internally,
|
|
|
|
* with a less than optimal application interface. A Galois LFSR is sufficient for our
|
|
|
|
* applications, and much more lightweight.
|
|
|
|
*/
|
|
|
|
void MicroBit::seedRandom()
|
|
|
|
{
|
|
|
|
randomValue = 0;
|
|
|
|
|
|
|
|
// Start the Random number generator. No need to leave it running... I hope. :-)
|
|
|
|
NRF_RNG->TASKS_START = 1;
|
|
|
|
|
|
|
|
for(int i = 0; i < 4 ;i++)
|
|
|
|
{
|
|
|
|
// Clear the VALRDY EVENT
|
|
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
|
|
|
|
|
|
// Wait for a number ot be generated.
|
|
|
|
while ( NRF_RNG->EVENTS_VALRDY == 0);
|
|
|
|
|
|
|
|
randomValue = (randomValue << 8) | ((int) NRF_RNG->VALUE);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Disable the generator to save power.
|
|
|
|
NRF_RNG->TASKS_STOP = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Periodic callback. Used by MicroBitDisplay, FiberScheduler and buttons.
|
|
|
|
*/
|
|
|
|
void MicroBit::systemTick()
|
|
|
|
{
|
|
|
|
// Scheduler callback. We do this here just as a single timer is more efficient. :-)
|
|
|
|
if (uBit.flags & MICROBIT_FLAG_SCHEDULER_RUNNING)
|
|
|
|
scheduler_tick();
|
|
|
|
|
|
|
|
//work out if any idle components need processing, if so prioritise the idle thread
|
|
|
|
for(int i = 0; i < MICROBIT_IDLE_COMPONENTS; i++)
|
|
|
|
if(idleThreadComponents[i] != NULL && idleThreadComponents[i]->isIdleCallbackNeeded())
|
|
|
|
{
|
2015-08-31 22:25:10 +00:00
|
|
|
fiber_flags |= MICROBIT_FLAG_DATA_READY;
|
2015-08-12 10:53:41 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
//update any components in the systemComponents array
|
|
|
|
for(int i = 0; i < MICROBIT_SYSTEM_COMPONENTS; i++)
|
|
|
|
if(systemTickComponents[i] != NULL)
|
|
|
|
systemTickComponents[i]->systemTick();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* System tasks to be executed by the idle thread when the Micro:Bit isn't busy or when data needs to be read.
|
|
|
|
*/
|
|
|
|
void MicroBit::systemTasks()
|
|
|
|
{
|
|
|
|
//call the idleTick member function indiscriminately
|
|
|
|
for(int i = 0; i < MICROBIT_IDLE_COMPONENTS; i++)
|
|
|
|
if(idleThreadComponents[i] != NULL)
|
|
|
|
idleThreadComponents[i]->idleTick();
|
|
|
|
|
2015-08-31 22:25:10 +00:00
|
|
|
fiber_flags &= ~MICROBIT_FLAG_DATA_READY;
|
2015-08-12 10:53:41 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* add a component to the array of components which invocate the systemTick member function during a systemTick
|
|
|
|
* @note this will be converted into a dynamic list of components
|
|
|
|
*/
|
|
|
|
void MicroBit::addSystemComponent(MicroBitComponent *component)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while(systemTickComponents[i] != NULL && i < MICROBIT_SYSTEM_COMPONENTS)
|
|
|
|
i++;
|
|
|
|
|
|
|
|
if(i == MICROBIT_SYSTEM_COMPONENTS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
systemTickComponents[i] = component;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* remove a component from the array of components
|
|
|
|
* @note this will be converted into a dynamic list of components
|
|
|
|
*/
|
|
|
|
void MicroBit::removeSystemComponent(MicroBitComponent *component)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while(systemTickComponents[i] != component && i < MICROBIT_SYSTEM_COMPONENTS)
|
|
|
|
i++;
|
|
|
|
|
|
|
|
if(i == MICROBIT_SYSTEM_COMPONENTS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
systemTickComponents[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* add a component to the array of components which invocate the systemTick member function during a systemTick
|
|
|
|
* @note this will be converted into a dynamic list of components
|
|
|
|
*/
|
|
|
|
void MicroBit::addIdleComponent(MicroBitComponent *component)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while(idleThreadComponents[i] != NULL && i < MICROBIT_IDLE_COMPONENTS)
|
|
|
|
i++;
|
|
|
|
|
|
|
|
if(i == MICROBIT_IDLE_COMPONENTS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
idleThreadComponents[i] = component;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* remove a component from the array of components
|
|
|
|
* @note this will be converted into a dynamic list of components
|
|
|
|
*/
|
|
|
|
void MicroBit::removeIdleComponent(MicroBitComponent *component)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
while(idleThreadComponents[i] != component && i < MICROBIT_IDLE_COMPONENTS)
|
|
|
|
i++;
|
|
|
|
|
|
|
|
if(i == MICROBIT_IDLE_COMPONENTS)
|
|
|
|
return;
|
|
|
|
|
|
|
|
idleThreadComponents[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determine the time since this MicroBit was last reset.
|
|
|
|
*
|
|
|
|
* @return The time since the last reset, in milliseconds. This will result in overflow after 1.6 months.
|
|
|
|
* TODO: handle overflow case.
|
|
|
|
*/
|
|
|
|
unsigned long MicroBit::systemTime()
|
|
|
|
{
|
|
|
|
return ticks;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Triggers a microbit panic where an infinite loop will occur swapping between the panicFace and statusCode if provided.
|
|
|
|
*
|
|
|
|
* @param statusCode the status code of the associated error. Status codes must be in the range 0-255.
|
|
|
|
*/
|
|
|
|
void MicroBit::panic(int statusCode)
|
|
|
|
{
|
|
|
|
//show error and enter infinite while
|
|
|
|
uBit.display.error(statusCode);
|
|
|
|
}
|
|
|
|
|