microbit-dal/source/ble-services/MicroBitRadio.cpp

425 lines
14 KiB
C++
Raw Normal View History

#include "MicroBit.h"
/**
* Provides a simple broadcast radio abstraction, built upon the raw nrf51822 RADIO module.
*
* The nrf51822 RADIO module supports a number of proprietary modes of operation oher than the typical BLE usage.
* This class uses one of these modes to enable simple, point to multipoint communication directly between micro:bits.
*
* TODO: The protocols implemented here do not currently perform any significant form of energy management,
* which means that they will consume far more energy than their BLE equivalent. Later versions of the protocol
* should look to address this through energy efficient broadcast techbiques / sleep scheduling. In particular, the GLOSSY
* approach to efficient rebroadcast and network synchronisation would likely provide an effective future step.
*
* TODO: Meshing should also be considered - again a GLOSSY approach may be effective here, and highly complementary to
* the master/slave arachitecture of BLE.
*
* TODO: This implementation may only operated whilst the BLE stack is disabled. The nrf51822 provides a timeslot API to allow
* BLE to cohabit with other protocols. Future work to allow this colocation would be benefical, and would also allow for the
* creation of wireless BLE bridges.
*
* NOTE: This API does not contain any form of encryption, authentication or authorisation. Its purpose is solely for use as a
* teaching aid to demonstrate how simple communications operates, and to provide a sandpit through which learning can take place.
* For serious applications, BLE should be considered a substantially more secure alternative.
*/
MicroBitRadio* MicroBitRadio::instance = NULL;
extern "C" void RADIO_IRQHandler(void)
{
// Move on to the next buffer, if possible.
MicroBitRadio::instance->queueRxBuf();
NRF_RADIO->PACKETPTR = (uint32_t) MicroBitRadio::instance->getRxBuf();
// Start listening for the next packet.
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
}
/**
* Constructor.
*
* Initialise the MicroBitRadio. Note that this class is demand activated, so most resources are only committed
* if send/recv or event registrations calls are made.
*/
MicroBitRadio::MicroBitRadio(uint16_t id) : datagram()
{
this->id = id;
2016-02-01 17:54:33 +00:00
this->status = 0;
this->group = 0;
this->queueDepth = 0;
this->rxQueue = NULL;
this->rxBuf = NULL;
instance = this;
}
/**
* Change the output power level of the transmitter to the given value.
*
* @param power a value in the range 0..7, where 0 is the lowest power and 7 is the highest.
* @return MICROBIT_OK on success, or MICROBIT_INVALID_PARAMETER if the value is out of range.
*
*/
int MicroBitRadio::setTransmitPower(int power)
{
if (power < 0 || power >= MICROBIT_BLE_POWER_LEVELS)
return MICROBIT_INVALID_PARAMETER;
NRF_RADIO->TXPOWER = (uint32_t)MICROBIT_BLE_POWER_LEVEL[power];
return MICROBIT_OK;
}
/**
* Change the transmission and reception band of the radio to the given channel
*
* @param band a frequency band in the range 0 - 100. Each step is 1MHz wide, based at 2400MHz.
* @return MICROBIT_OK on success, or MICROBIT_INVALID_PARAMETER if the value is out of range,
* or MICROBIT_NOT_SUPPORTED if the BLE stack is running.
*
*/
int MicroBitRadio::setFrequencyBand(int band)
{
if (uBit.ble)
return MICROBIT_NOT_SUPPORTED;
if (band < 0 || band > 100)
return MICROBIT_INVALID_PARAMETER;
NRF_RADIO->FREQUENCY = (uint32_t)band;
return MICROBIT_OK;
}
/**
* Retrieve a pointer to the currently allocated receive buffer. This is the area of memory
* actively being used by the radio hardware to store incoming data.
*
* @return a pointer to the current receive buffer
*/
PacketBuffer* MicroBitRadio::getRxBuf()
{
return rxBuf;
}
/**
* Attempt to queue a buffer received by the radio hardware, if sufficient space is available.
*
* @return MICROBIT_OK on success, or MICROBIT_NO_RESOURCES if a replacement receiver buffer
* could not be allocated (either by policy or memory exhaustion).
*/
int MicroBitRadio::queueRxBuf()
{
if (rxBuf == NULL)
return MICROBIT_INVALID_PARAMETER;
if (queueDepth >= MICROBIT_RADIO_MAXIMUM_RX_BUFFERS)
return MICROBIT_NO_RESOURCES;
// Ensure that a replacement buffer is available before queuing.
PacketBuffer *newRxBuf = new PacketBuffer();
if (newRxBuf == NULL)
return MICROBIT_NO_RESOURCES;
// We add to the tail of the queue to preserve causal ordering.
rxBuf->next = NULL;
if (rxQueue == NULL)
{
rxQueue = rxBuf;
}
else
{
PacketBuffer *p = rxQueue;
while (p->next != NULL)
p = p->next;
p->next = rxBuf;
}
// Increase our received packet count
queueDepth++;
// Allocate a new buffer for the receiver hardware to use. the old on will be passed on to higher layer protocols/apps.
rxBuf = newRxBuf;
return MICROBIT_OK;
}
/**
* Initialises the radio for use as a multipoint sender/receiver.
* This is currently only possible if the BLE stack (Soft Device) is disabled.
*
* @return MICROBIT_OK on success, MICROBIT_NOT_SUPPORTED if SoftDevice is enabled.
*/
int MicroBitRadio::enable()
{
// If the device is already initialised, then there's nothing to do.
if (status & MICROBIT_RADIO_STATUS_INITIALISED)
return MICROBIT_OK;
// Only attempt to enable this radio mode if BLE is disabled.
if (uBit.ble)
return MICROBIT_NOT_SUPPORTED;
// If this is the first time we've been enable, allocate out receive buffers.
if (rxBuf == NULL)
rxBuf = new PacketBuffer();
if (rxBuf == NULL)
return MICROBIT_NO_RESOURCES;
// Enable the High Frequency clock on the processor. This is a pre-requisite for
// the RADIO module. Without this clock, no communication is possible.
NRF_CLOCK->EVENTS_HFCLKSTARTED = 0;
NRF_CLOCK->TASKS_HFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0);
// Bring up the nrf51822 RADIO module in Nordic's proprietary 1MBps packet radio mode.
setTransmitPower(MICROBIT_RADIO_DEFAULT_TX_POWER);
setFrequencyBand(MICROBIT_RADIO_DEFAULT_FREQUENCY);
// Configure for 1Mbps throughput.
// This may sound excessive, but running a high data rates reduces the chances of collisions...
NRF_RADIO->MODE = RADIO_MODE_MODE_Nrf_1Mbit;
// Configure the addresses we use for this protocol. We run ANONYMOUSLY at the core.
// A 40 bit addresses is used. The first 32 bits match the ASCII character code for "uBit".
// Statistically, this provides assurance to avoid other similar 2.4GHz protocols that may be in the vicinity.
// We also map the assigned 8-bit GROUP id into the PREFIX field. This allows the RADIO hardware to perform
// address matching for us, and only generate an interrupt when a packet matching our group is received.
NRF_RADIO->BASE0 = MICROBIT_RADIO_BASE_ADDRESS;
// Join the default group. This will configure the remaining byte in the RADIO hardware module.
setGroup(MICROBIT_RADIO_DEFAULT_GROUP);
// The RADIO hardware module supports the use of multiple addresses, but as we're running anonymously, we only need one.
// Configure the RADIO module to use the default address (address 0) for both send and receive operations.
NRF_RADIO->TXADDRESS = 0;
NRF_RADIO->RXADDRESSES = 1;
// Packet layout configuration. The nrf51822 has a highly capable and flexible RADIO module that, in addition to transmission
// and reception of data, also contains a LENGTH field, two optional additional 1 byte fields (S0 and S1) and a CRC calculation.
// Configure the packet format for a simple 8 bit length field and no additional fields.
NRF_RADIO->PCNF0 = 0x00000008;
NRF_RADIO->PCNF1 = 0x02040000 | MICROBIT_RADIO_MAX_PACKET_SIZE;
// Most communication channels contain some form of checksum - a mathematical calculation taken based on all the data
// in a packet, that is also sent as part of the packet. When received, this calculation can be repeated, and the results
// from the sender and receiver compared. If they are different, then some corruption of the data ahas happened in transit,
// and we know we can't trust it. The nrf51822 RADIO uses a CRC for this - a very effective checksum calculation.
//
// Enable automatic 16bit CRC generation and checking, and configure how the CRC is calculated.
NRF_RADIO->CRCCNF = RADIO_CRCCNF_LEN_Two;
NRF_RADIO->CRCINIT = 0xFFFF;
NRF_RADIO->CRCPOLY = 0x11021;
// Set the start random value of the data whitening algorithm. This can be any non zero number.
NRF_RADIO->DATAWHITEIV = 0x18;
// Set up the RADIO module to read and write from our internal buffer.
NRF_RADIO->PACKETPTR = (uint32_t)rxBuf;
// Configure the hardware to issue an interrupt whenever a task is complete (e.g. send/receive).
NRF_RADIO->INTENSET = 0x00000008;
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
// Start listening for the next packet
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_RXEN = 1;
while(NRF_RADIO->EVENTS_READY == 0);
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
// register ourselves for a callback event, in order to empty the receive queue.
uBit.addIdleComponent(this);
// Done. Record that our RADIO is configured.
status |= MICROBIT_RADIO_STATUS_INITIALISED;
return MICROBIT_OK;
}
/**
* Disables the radio for use as a multipoint sender/receiver.
* @return MICROBIT_OK on success, MICROBIT_NOT_SUPPORTED if SoftDevice is enabled.
*/
int MicroBitRadio::disable()
{
// Only attempt to enable.disable the radio if the protocol is alreayd running.
if (uBit.ble)
return MICROBIT_NOT_SUPPORTED;
if (!(status & MICROBIT_RADIO_STATUS_INITIALISED))
return MICROBIT_OK;
// Disable interrupts and STOP any ongoing packet reception.
NVIC_DisableIRQ(RADIO_IRQn);
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while(NRF_RADIO->EVENTS_DISABLED == 0);
// deregister ourselves from the callback event used to empty the receive queue.
uBit.removeIdleComponent(this);
return MICROBIT_OK;
}
/**
* Sets the radio to listen to packets sent with the given group id.
*
* @param group The group to join. A micro:bit can only listen to one group ID at any time.
* @return MICROBIT_OK on success, or MICROBIT_NOT_SUPPORTED if the BLE stack is running.
*/
int MicroBitRadio::setGroup(uint8_t group)
{
if (uBit.ble)
return MICROBIT_NOT_SUPPORTED;
// Record our group id locally
this->group = group;
// Also append it to the address of this device, to allow the RADIO module to filter for us.
NRF_RADIO->PREFIX0 = (uint32_t)group;
return MICROBIT_OK;
}
/**
* A background, low priority callback that is triggered whenever the processor is idle.
* Here, we empty our queue of received packets, and pass them onto higher level protocol handlers.
*
* We provide optimised handling of well known, simple protocols and events on the MicroBitMessageBus
* to provide extensibility to other protocols that may be written in the future.
*/
void MicroBitRadio::idleTick()
{
// Walk the list of packets and process each one.
while(rxQueue)
{
PacketBuffer *p = rxQueue;
switch (p->protocol)
{
case MICROBIT_RADIO_PROTOCOL_DATAGRAM:
datagram.packetReceived();
break;
case MICROBIT_RADIO_PROTOCOL_EVENTBUS:
event.packetReceived();
break;
default:
MicroBitEvent(MICROBIT_ID_RADIO_DATA_READY, p->protocol);
}
// If the packet was processed, it will have been recv'd, and taken from the queue.
// If this was a packet for an unknown protocol, it will still be there, so simply free it.
if (p == rxQueue)
{
recv();
delete p;
}
}
}
/**
* Determines the number of packets ready to be processed.
2016-02-01 17:54:33 +00:00
* @return The number of packets in the receive buffer.
*/
int MicroBitRadio::dataReady()
{
return queueDepth;
}
/**
* Retrieves the next packet from the receive buffer.
* If a data packet is available, then it will be returned immediately to
* the caller. This call will also dequeue the buffer.
*
* NOTE: Once recv() has been called, it is the callers resposibility to
* delete the buffer when appropriate.
*
* @return The buffer containing the the packet. If no data is available, NULL is returned.
*/
PacketBuffer* MicroBitRadio::recv()
{
PacketBuffer *p = rxQueue;
if (p)
{
rxQueue = rxQueue->next;
queueDepth--;
}
return p;
}
/**
* Transmits the given buffer onto the broadcast radio.
* The call will wait until the transmission of the packet has completed before returning.
*
* @param data The packet contents to transmit.
* @return MICROBIT_OK on success, or MICROBIT_NOT_SUPPORTED if the BLE stack is running.
*/
int MicroBitRadio::send(PacketBuffer *buffer)
{
if (uBit.ble)
return MICROBIT_NOT_SUPPORTED;
if (buffer == NULL)
return MICROBIT_INVALID_PARAMETER;
if (buffer->length > MICROBIT_RADIO_MAX_PACKET_SIZE + MICROBIT_RADIO_HEADER_SIZE - 1)
return MICROBIT_INVALID_PARAMETER;
// Firstly, disable the Radio interrupt. We want to wait until the trasmission completes.
NVIC_DisableIRQ(RADIO_IRQn);
// Turn off the transceiver.
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while(NRF_RADIO->EVENTS_DISABLED == 0);
// Configure the radio to send the buffer provided.
NRF_RADIO->PACKETPTR = (uint32_t) buffer;
// Turn on the transmitter, and wait for it to signal that it's ready to use.
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_TXEN = 1;
while (NRF_RADIO->EVENTS_READY == 0);
// Start transmission and wait for end of packet.
NRF_RADIO->TASKS_START = 1;
NRF_RADIO->EVENTS_END = 0;
while(NRF_RADIO->EVENTS_END == 0);
// Return the radio to using the default receive buffer
NRF_RADIO->PACKETPTR = (uint32_t) rxBuf;
// Turn off the transmitter.
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while(NRF_RADIO->EVENTS_DISABLED == 0);
// Start listening for the next packet
NRF_RADIO->EVENTS_READY = 0;
NRF_RADIO->TASKS_RXEN = 1;
while(NRF_RADIO->EVENTS_READY == 0);
NRF_RADIO->EVENTS_END = 0;
NRF_RADIO->TASKS_START = 1;
// Re-enable the Radio interrupt.
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
return MICROBIT_OK;
}