Merge pull request #86 from lancaster-university/light-sensor

Adding MicroBitLightSensor to the DAL
This commit is contained in:
James Devine 2016-02-01 21:50:22 +00:00
commit 004b701419
8 changed files with 513 additions and 105 deletions

View file

@ -24,6 +24,7 @@
#include "MicroBitCompass.h"
#include "MicroBitAccelerometer.h"
#include "MicroBitThermometer.h"
#include "MicroBitLightSensor.h"
#include "MicroBitMultiButton.h"
#include "MicroBitSerial.h"
@ -46,12 +47,14 @@
#define MICROBIT_NAME_CODE_LETTERS 5
// Random number generator
#define NRF51822_RNG_ADDRESS 0x4000D000
#define NRF51822_RNG_ADDRESS 0x4000D000
// mbed pin assignments of core components.
#define MICROBIT_PIN_SDA P0_30
#define MICROBIT_PIN_SCL P0_0
#define MICROBIT_PIN_SDA P0_30
#define MICROBIT_PIN_SCL P0_0
#define MICROBIT_DEFAULT_TICK_PERIOD FIBER_TICK_PERIOD_MS
/**
* Class definition for a MicroBit device.
@ -65,6 +68,8 @@ class MicroBit
void compassCalibrator(MicroBitEvent e);
uint32_t randomValue;
//the current tick period in MS
int tickPeriod;
public:
@ -259,6 +264,21 @@ class MicroBit
*/
int removeIdleComponent(MicroBitComponent *component);
/*
* Reconfigures the ticker to the given speed in milliseconds.
* @param speedMs the speed in milliseconds
* @return MICROBIT_OK on success. MICROBIT_INVALID_PARAMETER is returned if speedUs < 1
*
* @note this will also modify the value that is added to ticks in MiroBitFiber:scheduler_tick()
*/
int setTickPeriod(int speedMs);
/*
* Returns the currently used tick speed in milliseconds
*/
int getTickPeriod();
/**
* Determine the time since this MicroBit was last reset.
*

View file

@ -1,17 +1,12 @@
#ifndef MICROBIT_DISPLAY_H
#define MICROBIT_DISPLAY_H
/**
* Core Configuration settings.
*/
#define MICROBIT_DISPLAY_REFRESH_PERIOD ((float)FIBER_TICK_PERIOD_MS / (float)1000)
/**
* MessageBus Event Codes
*/
#define MICROBIT_DISPLAY_EVT_ANIMATION_COMPLETE 1
#define MICROBIT_DISPLAY_EVT_FREE 2
#define MICROBIT_DISPLAY_EVT_LIGHT_SENSE 4
/**
* I/O configurations for common devices.
@ -43,6 +38,7 @@
#define MICROBIT_DISPLAY_COLUMN_COUNT 9
#define MICROBIT_DISPLAY_COLUMN_PINS P0_4, P0_5, P0_6, P0_7, P0_8, P0_9, P0_10, P0_11, P0_12
#define MICROBIT_DISPLAY_COLUMN_START P0_4
#define MICROBIT_DISPLAY_ROW_START P0_13
#endif
//
@ -55,6 +51,8 @@
#define MICROBIT_DISPLAY_GREYSCALE_BIT_DEPTH 8
#define MICROBIT_DISPLAY_ANIMATE_DEFAULT_POS -255
#define MICROBIT_DISPLAY_ROW_RESET 0x20
#include "mbed.h"
#include "ManagedString.h"
#include "MicroBitComponent.h"
@ -73,7 +71,8 @@ enum AnimationMode {
enum DisplayMode {
DISPLAY_MODE_BLACK_AND_WHITE,
DISPLAY_MODE_GREYSCALE
DISPLAY_MODE_GREYSCALE,
DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE
};
enum DisplayRotation {
@ -161,6 +160,9 @@ class MicroBitDisplay : public MicroBitComponent
// The number of pixels the image is shifted on the display in each quantum.
int8_t scrollingImageStride;
// A pointer to an instance of light sensor, if in use
MicroBitLightSensor* lightSensor;
// Flag to indicate if image has been rendered to screen yet (or not)
bool scrollingImageRendered;
@ -185,6 +187,12 @@ class MicroBitDisplay : public MicroBitComponent
*/
void render();
/**
* Renders the current image, and drops the fourth frame to allow for
* sensors that require the display to operate.
*/
void renderWithLightSense();
/**
* Translates a bit mask into a timer interrupt that gives the appearence of greyscale.
*/
@ -473,7 +481,7 @@ public:
/**
* Sets the mode of the display.
* @param mode The mode to swap the display into. (can be either DISPLAY_MODE_GREYSCALE, or DISPLAY_MODE_NORMAL)
* @param mode The mode to swap the display into. (can be either DISPLAY_MODE_GREYSCALE, DISPLAY_MODE_BLACK_AND_WHITE, DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
*
* Example:
* @code
@ -482,6 +490,12 @@ public:
*/
void setDisplayMode(DisplayMode mode);
/**
* Gets the mode of the display.
* @return the current mode of the display
*/
int getDisplayMode();
/**
* Fetches the current brightness of this display.
* @return the brightness of this display, in the range 0..255.
@ -563,6 +577,19 @@ public:
*/
MicroBitImage screenShot();
/**
* Constructs an instance of a MicroBitLightSensor if not already configured
* and sets the display mode to DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE.
*
* This also changes the tickPeriod to MICROBIT_LIGHT_SENSOR_TICK_SPEED so
* that the display does not suffer from artifacts.
*
* @note this will return 0 on the first call to this method, a light reading
* will be available after the display has activated the light sensor for the
* first time.
*/
int readLightLevel();
/**
* Destructor for MicroBitDisplay, so that we deregister ourselves as a systemComponent
*/

104
inc/MicroBitLightSensor.h Normal file
View file

@ -0,0 +1,104 @@
#ifndef MICROBIT_LIGHT_SENSOR_H
#define MICROBIT_LIGHT_SENSOR_H
#include "mbed.h"
#include "MicroBitComponent.h"
#define MICROBIT_LIGHT_SENSOR_CHAN_NUM 3
#define MICROBIT_LIGHT_SENSOR_AN_SET_TIME 4000
#define MICROBIT_LIGHT_SENSOR_TICK_PERIOD 5
#define MICROBIT_LIGHT_SENSOR_MAX_VALUE 338
#define MICROBIT_LIGHT_SENSOR_MIN_VALUE 75
/**
* Class definition for MicroBitLightSensor.
*
* This is an object that interleaves light sensing with uBit.display.
*/
class MicroBitLightSensor
{
//contains the results from each section of the display
int results[MICROBIT_LIGHT_SENSOR_CHAN_NUM] = { 0 };
//holds the current channel (also used to index the results array)
uint8_t chan;
//a Timeout which triggers our analogReady() call
Timeout analogTrigger;
//a pointer the currently sensed pin, represented as an AnalogIn
AnalogIn* sensePin;
/**
* After the startSensing method has been called, this method will be called
* MICROBIT_LIGHT_SENSOR_AN_SET_TIME after.
*
* It will then read from the currently selected channel using the AnalogIn
* that was configured in the startSensing method.
*/
void analogReady();
/**
* Forcibly disables the AnalogIn, otherwise it will remain in possession
* of the GPIO channel it is using, meaning that the display will not be
* able to use a channel (COL).
*
* This is required as per PAN 3, details of which can be found here:
*
* https://www.nordicsemi.com/eng/nordic/download_resource/24634/5/88440387
*/
void analogDisable();
/**
* The method that is invoked by sending MICROBIT_DISPLAY_EVT_LIGHT_SENSE
* using the id MICROBIT_ID_DISPLAY.
*
* If you want to manually trigger this method, you should use the event bus.
*/
void startSensing(MicroBitEvent);
public:
/**
* Constructor.
* Create a representation of the light sensor
*/
MicroBitLightSensor();
/**
* This method returns a summed average of the three sections of the display.
*
* A section is defined as:
* ___________________
* | 1 | | 2 | | 3 |
* |___|___|___|___|___|
* | | | | | |
* |___|___|___|___|___|
* | 2 | | 3 | | 1 |
* |___|___|___|___|___|
* | | | | | |
* |___|___|___|___|___|
* | 3 | | 1 | | 2 |
* |___|___|___|___|___|
*
* Where each number represents a different section on the 5 x 5 matrix display.
*
* @return returns a value in the range 0 - 100 where 0 is dark, and 100
* is very bright
*
* @note currently returns a value in the range 0 - 100 where 0 is dark, and 100
* is very bright perhaps we should normalise the returned values into an SI unit!
* TODO.
*/
int read();
/**
* The destructor restores the default Display Mode and tick speed, and also
* removes the listener from the MessageBus.
*/
~MicroBitLightSensor();
};
#endif

View file

@ -29,6 +29,7 @@ set(YOTTA_AUTO_MICROBIT-DAL_CPP_FILES
"MicroBitSerial.cpp"
"MicroBitHeapAllocator.cpp"
"MicroBitListener.cpp"
"MicroBitLightSensor.cpp"
"RefCounted.cpp"
"MemberFunctionCallback.cpp"
"ble-services/MicroBitBLEManager.cpp"

View file

@ -1,4 +1,4 @@
/*
/*
* The underlying Nordic libraries that support BLE do not compile cleanly with the stringent GCC settings we employ
* If we're compiling under GCC, then we suppress any warnings generated from this code (but not the rest of the DAL)
* The ARM cc compiler is more tolerant. We don't test __GNUC__ here to detect GCC as ARMCC also typically sets this
@ -133,8 +133,10 @@ void MicroBit::init()
// Seed our random number generator
seedRandom();
tickPeriod = MICROBIT_DEFAULT_TICK_PERIOD;
// Start refreshing the Matrix Display
systemTicker.attach(this, &MicroBit::systemTick, MICROBIT_DISPLAY_REFRESH_PERIOD);
systemTicker.attach_us(this, &MicroBit::systemTick, tickPeriod * 1000);
// Register our compass calibration algorithm.
MessageBus.listen(MICROBIT_ID_COMPASS, MICROBIT_COMPASS_EVT_CALIBRATE, this, &MicroBit::compassCalibrator, MESSAGE_BUS_LISTENER_IMMEDIATE);
@ -608,6 +610,35 @@ int MicroBit::removeIdleComponent(MicroBitComponent *component)
return MICROBIT_OK;
}
/*
* Reconfigures the ticker to the given speed in milliseconds.
* @param speedMs the speed in milliseconds
* @return MICROBIT_OK on success. MICROBIT_INVALID_PARAMETER is returned if speedUs < 1
*
* @note this will also modify the value that is added to ticks in MiroBitFiber:scheduler_tick()
*/
int MicroBit::setTickPeriod(int speedMs)
{
if(speedMs < 1)
return MICROBIT_INVALID_PARAMETER;
uBit.systemTicker.detach();
uBit.systemTicker.attach_us(this, &MicroBit::systemTick, speedMs * 1000);
tickPeriod = speedMs;
return MICROBIT_OK;
}
/*
* Returns the currently used tick speed in milliseconds
*/
int MicroBit::getTickPeriod()
{
return tickPeriod;
}
/**
* Determine the time since this MicroBit was last reset.
*

View file

@ -34,7 +34,7 @@ MicroBitDisplay::MicroBitDisplay(uint16_t id, uint8_t x, uint8_t y) :
this->width = x;
this->height = y;
this->strobeRow = 0;
this->strobeBitMsk = 0x20;
this->strobeBitMsk = MICROBIT_DISPLAY_ROW_RESET;
this->rotation = MICROBIT_DISPLAY_ROTATION_0;
this->greyscaleBitMsk = 0x01;
this->timingCount = 0;
@ -44,6 +44,8 @@ MicroBitDisplay::MicroBitDisplay(uint16_t id, uint8_t x, uint8_t y) :
this->mode = DISPLAY_MODE_BLACK_AND_WHITE;
this->animationMode = ANIMATION_MODE_NONE;
this->lightSensor = NULL;
uBit.flags |= MICROBIT_FLAG_DISPLAY_RUNNING;
}
@ -58,6 +60,12 @@ void MicroBitDisplay::systemTick()
if(!(uBit.flags & MICROBIT_FLAG_DISPLAY_RUNNING))
return;
if(mode == DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
{
renderWithLightSense();
return;
}
// Move on to the next row.
strobeBitMsk <<= 1;
strobeRow++;
@ -65,7 +73,7 @@ void MicroBitDisplay::systemTick()
//reset the row counts and bit mask when we have hit the max.
if(strobeRow == MICROBIT_DISPLAY_ROW_COUNT){
strobeRow = 0;
strobeBitMsk = 0x20;
strobeBitMsk = MICROBIT_DISPLAY_ROW_RESET;
}
if(mode == DISPLAY_MODE_BLACK_AND_WHITE)
@ -139,13 +147,37 @@ void MicroBitDisplay::render()
//timer does not have enough resolution for brightness of 1. 23.53 us
if(brightness != MICROBIT_DISPLAY_MAXIMUM_BRIGHTNESS && brightness > MICROBIT_DISPLAY_MINIMUM_BRIGHTNESS)
renderTimer.attach(this, &MicroBitDisplay::renderFinish, (((float)brightness) / ((float)MICROBIT_DISPLAY_MAXIMUM_BRIGHTNESS)) * (float)MICROBIT_DISPLAY_REFRESH_PERIOD);
renderTimer.attach_us(this, &MicroBitDisplay::renderFinish, (((brightness * 100) / (MICROBIT_DISPLAY_MAXIMUM_BRIGHTNESS)) * uBit.getTickPeriod()));
//this will take around 23us to execute
if(brightness <= MICROBIT_DISPLAY_MINIMUM_BRIGHTNESS)
renderFinish();
}
void MicroBitDisplay::renderWithLightSense()
{
//reset the row counts and bit mask when we have hit the max.
if(strobeRow == MICROBIT_DISPLAY_ROW_COUNT + 1)
{
MicroBitEvent(id, MICROBIT_DISPLAY_EVT_LIGHT_SENSE);
strobeRow = 0;
strobeBitMsk = MICROBIT_DISPLAY_ROW_RESET;
}
else
{
render();
this->animationUpdate();
// Move on to the next row.
strobeBitMsk <<= 1;
strobeRow++;
}
}
void MicroBitDisplay::renderGreyscale()
{
int coldata = 0;
@ -883,7 +915,7 @@ int MicroBitDisplay::setBrightness(int b)
/**
* Sets the mode of the display.
* @param mode The mode to swap the display into. (can be either DISPLAY_MODE_GREYSCALE, or DISPLAY_MODE_NORMAL)
* @param mode The mode to swap the display into. (can be either DISPLAY_MODE_GREYSCALE, DISPLAY_MODE_BLACK_AND_WHITE, DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
*
* Example:
* @code
@ -892,9 +924,37 @@ int MicroBitDisplay::setBrightness(int b)
*/
void MicroBitDisplay::setDisplayMode(DisplayMode mode)
{
if(mode == DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
{
//to reduce the artifacts on the display - increase the tick
if(uBit.getTickPeriod() != MICROBIT_LIGHT_SENSOR_TICK_PERIOD)
uBit.setTickPeriod(MICROBIT_LIGHT_SENSOR_TICK_PERIOD);
}
if(this->mode == DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE && mode != DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
{
//if we previously were in light sense mode - return to our default.
if(uBit.getTickPeriod() != MICROBIT_DEFAULT_TICK_PERIOD)
uBit.setTickPeriod(MICROBIT_DEFAULT_TICK_PERIOD);
delete this->lightSensor;
this->lightSensor = NULL;
}
this->mode = mode;
}
/**
* Gets the mode of the display.
* @return the current mode of the display
*/
int MicroBitDisplay::getDisplayMode()
{
return this->mode;
}
/**
* Fetches the current brightness of this display.
* @return the brightness of this display, in the range 0..255.
@ -992,7 +1052,7 @@ void MicroBitDisplay::error(int statusCode)
disable(); //relinquish PWMOut's control
uint8_t strobeRow = 0;
uint8_t strobeBitMsk = 0x20;
uint8_t strobeBitMsk = MICROBIT_DISPLAY_ROW_RESET;
//point to the font stored in Flash
const unsigned char * fontLocation = MicroBitFont::defaultFont;
@ -1019,7 +1079,7 @@ void MicroBitDisplay::error(int statusCode)
if(strobeRow == 3)
{
strobeRow = 0;
strobeBitMsk = 0x20;
strobeBitMsk = MICROBIT_DISPLAY_ROW_RESET;
}
// Calculate the bitpattern to write.
@ -1087,6 +1147,28 @@ MicroBitImage MicroBitDisplay::screenShot()
return image.crop(0,0,MICROBIT_DISPLAY_WIDTH,MICROBIT_DISPLAY_HEIGHT);
}
/**
* Constructs an instance of a MicroBitLightSensor if not already configured
* and sets the display mode to DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE.
*
* This also changes the tickPeriod to MICROBIT_LIGHT_SENSOR_TICK_SPEED so
* that the display does not suffer from artifacts.
*
* @note this will return 0 on the first call to this method, a light reading
* will be available after the display has activated the light sensor for the
* first time.
*/
int MicroBitDisplay::readLightLevel()
{
if(mode != DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE)
{
setDisplayMode(DISPLAY_MODE_BLACK_AND_WHITE_LIGHT_SENSE);
this->lightSensor = new MicroBitLightSensor();
}
return this->lightSensor->read();
}
/**
* Destructor for MicroBitDisplay, so that we deregister ourselves as a systemComponent
*/

View file

@ -6,7 +6,7 @@
* 1) To provide a clean abstraction for application languages to use when building async behaviour (callbacks).
* 2) To provide ISR decoupling for Messagebus events generted in an ISR context.
*/
#include "MicroBit.h"
/*
@ -37,7 +37,7 @@ unsigned long ticks = 0;
uint8_t fiber_flags = 0;
/**
* Utility function to add the currenty running fiber to the given queue.
* Utility function to add the currenty running fiber to the given queue.
* Perform a simple add at the head, to avoid complexity,
* Queues are normally very short, so maintaining a doubly linked, sorted list typically outweighs the cost of
* brute force searching.
@ -62,7 +62,7 @@ void queue_fiber(Fiber *f, Fiber **queue)
}
else
{
// Scan to the end of the queue.
// Scan to the end of the queue.
// We don't maintain a tail pointer to save RAM (queues are nrmally very short).
Fiber *last = *queue;
@ -78,7 +78,7 @@ void queue_fiber(Fiber *f, Fiber **queue)
}
/**
* Utility function to the given fiber from whichever queue it is currently stored on.
* Utility function to the given fiber from whichever queue it is currently stored on.
* @param f the fiber to remove.
*/
void dequeue_fiber(Fiber *f)
@ -87,34 +87,34 @@ void dequeue_fiber(Fiber *f)
if (f->queue == NULL)
return;
// Remove this fiber fromm whichever queue it is on.
// Remove this fiber fromm whichever queue it is on.
__disable_irq();
if (f->prev != NULL)
f->prev->next = f->next;
else
*(f->queue) = f->next;
if(f->next)
f->next->prev = f->prev;
f->next = NULL;
f->prev = NULL;
f->queue = NULL;
__enable_irq();
}
/**
* Allocates a fiber from the fiber pool if availiable. Otherwise, allocates a new one from the heap.
*/
*/
Fiber *getFiberContext()
{
Fiber *f;
__disable_irq();
if (fiberPool != NULL)
{
f = fiberPool;
@ -124,17 +124,17 @@ Fiber *getFiberContext()
else
{
__enable_irq();
f = new Fiber();
if (f == NULL)
return NULL;
f->stack_bottom = 0;
f->stack_top = 0;
}
// Ensure this fiber is in suitable state for reuse.
}
// Ensure this fiber is in suitable state for reuse.
f->flags = 0;
f->tcb.stack_base = CORTEX_M0_STACK_BASE;
@ -143,7 +143,7 @@ Fiber *getFiberContext()
/**
* Initialises the Fiber scheduler.
* Initialises the Fiber scheduler.
* Creates a Fiber context around the calling thread, and adds it to the run queue as the current thread.
*
* This function must be called once only from the main thread, and before any other Fiber operation.
@ -152,14 +152,14 @@ void scheduler_init()
{
// Create a new fiber context
currentFiber = getFiberContext();
// Add ourselves to the run queue.
queue_fiber(currentFiber, &runQueue);
// Create the IDLE fiber.
// Configure the fiber to directly enter the idle task.
idleFiber = getFiberContext();
idleFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
idleFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
idleFiber->tcb.LR = (uint32_t) &idle_task;
// Register to receive events in the NOTIFY channel - this is used to implement wait-notify semantics
@ -172,36 +172,36 @@ void scheduler_init()
/**
* Timer callback. Called from interrupt context, once every FIBER_TICK_PERIOD_MS milliseconds.
* Simply checks to determine if any fibers blocked on the sleep queue need to be woken up
* Simply checks to determine if any fibers blocked on the sleep queue need to be woken up
* and made runnable.
*/
void scheduler_tick()
{
Fiber *f = sleepQueue;
Fiber *t;
// increment our real-time counter.
ticks += FIBER_TICK_PERIOD_MS;
ticks += uBit.getTickPeriod();
// Check the sleep queue, and wake up any fibers as necessary.
while (f != NULL)
{
t = f->next;
t = f->next;
if (ticks >= f->context)
{
// Wakey wakey!
dequeue_fiber(f);
queue_fiber(f,&runQueue);
}
f = t;
}
}
/**
* Event callback. Called from the message bus whenever an event is raised.
* Checks to determine if any fibers blocked on the wait queue need to be woken up
* Event callback. Called from the message bus whenever an event is raised.
* Checks to determine if any fibers blocked on the wait queue need to be woken up
* and made runnable due to the event.
*/
void scheduler_event(MicroBitEvent evt)
@ -209,20 +209,20 @@ void scheduler_event(MicroBitEvent evt)
Fiber *f = waitQueue;
Fiber *t;
int notifyOneComplete = 0;
// Check the wait queue, and wake up any fibers as necessary.
while (f != NULL)
{
t = f->next;
// extract the event data this fiber is blocked on.
t = f->next;
// extract the event data this fiber is blocked on.
uint16_t id = f->context & 0xFFFF;
uint16_t value = (f->context & 0xFFFF0000) >> 16;
// Special case for the NOTIFY_ONE channel...
if ((evt.source == MICROBIT_ID_NOTIFY_ONE && id == MICROBIT_ID_NOTIFY) && (value == MICROBIT_EVT_ANY || value == evt.value))
{
if (!notifyOneComplete)
if (!notifyOneComplete)
{
// Wakey wakey!
dequeue_fiber(f);
@ -238,7 +238,7 @@ void scheduler_event(MicroBitEvent evt)
dequeue_fiber(f);
queue_fiber(f,&runQueue);
}
f = t;
}
@ -250,9 +250,9 @@ void scheduler_event(MicroBitEvent evt)
/**
* Blocks the calling thread for the given period of time.
* The calling thread will be immediatley descheduled, and placed onto a
* wait queue until the requested amount of time has elapsed.
*
* The calling thread will be immediatley descheduled, and placed onto a
* wait queue until the requested amount of time has elapsed.
*
* n.b. the fiber will not be be made runnable until after the elasped time, but there
* are no guarantees precisely when the fiber will next be scheduled.
*
@ -269,8 +269,8 @@ void fiber_sleep(unsigned long t)
// Allocate a new fiber. This will come from the fiber pool if availiable,
// else a new one will be allocated on the heap.
forkedFiber = getFiberContext();
// If we're out of memory, there's nothing we can do.
// If we're out of memory, there's nothing we can do.
// keep running in the context of the current thread as a best effort.
if (forkedFiber != NULL)
f = forkedFiber;
@ -278,22 +278,22 @@ void fiber_sleep(unsigned long t)
// Calculate and store the time we want to wake up.
f->context = ticks + t;
// Remove fiber from the run queue
dequeue_fiber(f);
// Add fiber to the sleep queue. We maintain strict ordering here to reduce lookup times.
queue_fiber(f, &sleepQueue);
// Finally, enter the scheduler.
schedule();
}
/**
* Blocks the calling thread until the specified event is raised.
* The calling thread will be immediatley descheduled, and placed onto a
* The calling thread will be immediatley descheduled, and placed onto a
* wait queue until the requested event is received.
*
*
* n.b. the fiber will not be be made runnable until after the event is raised, but there
* are no guarantees precisely when the fiber will next be scheduled.
*
@ -311,8 +311,8 @@ void fiber_wait_for_event(uint16_t id, uint16_t value)
// Allocate a TCB from the new fiber. This will come from the tread pool if availiable,
// else a new one will be allocated on the heap.
forkedFiber = getFiberContext();
// If we're out of memory, there's nothing we can do.
// If we're out of memory, there's nothing we can do.
// keep running in the context of the current thread as a best effort.
if (forkedFiber != NULL)
f = forkedFiber;
@ -320,13 +320,13 @@ void fiber_wait_for_event(uint16_t id, uint16_t value)
// Encode the event data in the context field. It's handy having a 32 bit core. :-)
f->context = value << 16 | id;
// Remove ourselve from the run queue
dequeue_fiber(f);
// Add ourselves to the sleep queue. We maintain strict ordering here to reduce lookup times.
queue_fiber(f, &waitQueue);
// Register to receive this event, so we can wake up the fiber when it happens.
// Special case for teh notify channel, as we always stay registered for that.
if (id != MICROBIT_ID_NOTIFY && id != MICROBIT_ID_NOTIFY_ONE)
@ -337,16 +337,16 @@ void fiber_wait_for_event(uint16_t id, uint16_t value)
}
/**
* Executes the given function asynchronously.
*
* Executes the given function asynchronously.
*
* Fibers are often used to run event handlers, however many of these event handlers are very simple functions
* that complete very quickly, bringing unecessary RAM overhead.
*
* This function takes a snapshot of the current processor context, then attempts to optimistically call the given function directly.
* We only create an additional fiber if that function performs a block operation.
* This function takes a snapshot of the current processor context, then attempts to optimistically call the given function directly.
* We only create an additional fiber if that function performs a block operation.
*
* @param entry_fn The function to execute.
* @return MICROBIT_OK, or MICROBIT_INVALID_PARAMETER.
* @return MICROBIT_OK, or MICROBIT_INVALID_PARAMETER.
*/
int invoke(void (*entry_fn)(void))
{
@ -361,14 +361,14 @@ int invoke(void (*entry_fn)(void))
create_fiber(entry_fn);
return MICROBIT_OK;
}
// Snapshot current context, but also update the Link Register to
// refer to our calling function.
save_register_context(&currentFiber->tcb);
// If we're here, there are two possibilities:
// 1) We're about to attempt to execute the user code
// 2) We've already tried to execute the code, it blocked, and we've backtracked.
// 2) We've already tried to execute the code, it blocked, and we've backtracked.
// If we're returning from the user function and we forked another fiber then cleanup and exit.
if (currentFiber->flags & MICROBIT_FIBER_FLAG_PARENT)
@ -382,7 +382,7 @@ int invoke(void (*entry_fn)(void))
// execute the function directly. If the code tries to block, we detect this and
// spawn a thread to deal with it.
currentFiber->flags |= MICROBIT_FIBER_FLAG_FOB;
entry_fn();
entry_fn();
currentFiber->flags &= ~MICROBIT_FIBER_FLAG_FOB;
// If this is is an exiting fiber that for spawned to handle a blocking call, recycle it.
@ -394,17 +394,17 @@ int invoke(void (*entry_fn)(void))
}
/**
* Executes the given parameterized function asynchronously.
*
* Executes the given parameterized function asynchronously.
*
* Fibers are often used to run event handlers, however many of these event handlers are very simple functions
* that complete very quickly, bringing unecessary RAM overhead.
*
* This function takes a snapshot of the current processor context, then attempt to optimistically call the given function directly.
* We only create an additional fiber if that function performs a block operation.
* This function takes a snapshot of the current processor context, then attempt to optimistically call the given function directly.
* We only create an additional fiber if that function performs a block operation.
*
* @param entry_fn The function to execute.
* @param param an untyped parameter passed into the entry_fn.
* @return MICROBIT_OK, or MICROBIT_INVALID_PARAMETER.
* @return MICROBIT_OK, or MICROBIT_INVALID_PARAMETER.
*/
int invoke(void (*entry_fn)(void *), void *param)
{
@ -419,14 +419,14 @@ int invoke(void (*entry_fn)(void *), void *param)
create_fiber(entry_fn, param);
return MICROBIT_OK;
}
// Snapshot current context, but also update the Link Register to
// refer to our calling function.
save_register_context(&currentFiber->tcb);
// If we're here, there are two possibilities:
// 1) We're about to attempt to execute the user code
// 2) We've already tried to execute the code, it blocked, and we've backtracked.
// 2) We've already tried to execute the code, it blocked, and we've backtracked.
// If we're returning from the user function and we forked another fiber then cleanup and exit.
if (currentFiber->flags & MICROBIT_FIBER_FLAG_PARENT)
@ -440,7 +440,7 @@ int invoke(void (*entry_fn)(void *), void *param)
// execute the function directly. If the code tries to block, we detect this and
// spawn a thread to deal with it.
currentFiber->flags |= MICROBIT_FIBER_FLAG_FOB;
entry_fn(param);
entry_fn(param);
currentFiber->flags &= ~MICROBIT_FIBER_FLAG_FOB;
// If this is is an exiting fiber that for spawned to handle a blocking call, recycle it.
@ -480,26 +480,26 @@ Fiber *__create_fiber(uint32_t ep, uint32_t cp, uint32_t pm, int parameterised)
// Validate our parameters.
if (ep == 0 || cp == 0)
return NULL;
// Allocate a TCB from the new fiber. This will come from the fiber pool if availiable,
// else a new one will be allocated on the heap.
Fiber *newFiber = getFiberContext();
// If we're out of memory, there's nothing we can do.
if (newFiber == NULL)
return NULL;
newFiber->tcb.R0 = (uint32_t) ep;
newFiber->tcb.R1 = (uint32_t) cp;
newFiber->tcb.R2 = (uint32_t) pm;
// Set the stack and assign the link register to refer to the appropriate entry point wrapper.
newFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
newFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
newFiber->tcb.LR = parameterised ? (uint32_t) &launch_new_fiber_param : (uint32_t) &launch_new_fiber;
// Add new fiber to the run queue.
queue_fiber(newFiber, &runQueue);
return newFiber;
}
@ -507,7 +507,7 @@ Fiber *__create_fiber(uint32_t ep, uint32_t cp, uint32_t pm, int parameterised)
* Creates a new Fiber, and launches it.
*
* @param entry_fn The function the new Fiber will begin execution in.
* @param completion_fn The function called when the thread completes execution of entry_fn.
* @param completion_fn The function called when the thread completes execution of entry_fn.
* @return The new Fiber.
*/
Fiber *create_fiber(void (*entry_fn)(void), void (*completion_fn)(void))
@ -521,7 +521,7 @@ Fiber *create_fiber(void (*entry_fn)(void), void (*completion_fn)(void))
*
* @param entry_fn The function the new Fiber will begin execution in.
* @param param an untyped parameter passed into the entry_fn anf completion_fn.
* @param completion_fn The function called when the thread completes execution of entry_fn.
* @param completion_fn The function called when the thread completes execution of entry_fn.
* @return The new Fiber.
*/
Fiber *create_fiber(void (*entry_fn)(void *), void *param, void (*completion_fn)(void *))
@ -543,15 +543,15 @@ void release_fiber(void *)
* Any fiber reaching the end of its entry function will return here for recycling.
*/
void release_fiber(void)
{
{
// Remove ourselves form the runqueue.
dequeue_fiber(currentFiber);
// Add ourselves to the list of free fibers
queue_fiber(currentFiber, &fiberPool);
// Find something else to do!
schedule();
schedule();
}
/**
@ -571,7 +571,7 @@ void verify_stack_size(Fiber *f)
// Calculate the stack depth.
stackDepth = f->tcb.stack_base - ((uint32_t) __get_MSP());
// Calculate the size of our allocated stack buffer
// Calculate the size of our allocated stack buffer
bufferSize = f->stack_top - f->stack_bottom;
// If we're too small, increase our buffer size.
@ -624,10 +624,10 @@ void schedule()
// Define the stack base of the forked fiber to be align with the entry point of the parent fiber
forkedFiber->tcb.stack_base = currentFiber->tcb.SP;
// Ensure the stack allocation of the new fiber is large enough
// Ensure the stack allocation of the new fiber is large enough
verify_stack_size(forkedFiber);
// Store the full context of this fiber.
// Store the full context of this fiber.
save_context(&forkedFiber->tcb, forkedFiber->stack_top);
// We may now be either the newly created thread, or the one that created it.
@ -638,7 +638,7 @@ void schedule()
// If we're the new thread, we must have been unblocked by the scheduler, so simply return
// and continue processing.
return;
return;
}
// We're in a normal scheduling context, so perform a round robin algorithm across runnable fibers.
@ -653,7 +653,7 @@ void schedule()
else
// Otherwise, just pick the head of the run queue.
currentFiber = runQueue;
if (currentFiber == idleFiber && oldFiber->flags & MICROBIT_FIBER_FLAG_DO_NOT_PAGE)
{
// Run the idle task right here using the old fiber's stack.
@ -676,12 +676,12 @@ void schedule()
// Swap to the context of the chosen fiber, and we're done.
// Don't bother with the overhead of switching if there's only one fiber on the runqueue!
if (currentFiber != oldFiber)
if (currentFiber != oldFiber)
{
// Special case for the idle task, as we don't maintain a stack context (just to save memory).
if (currentFiber == idleFiber)
{
idleFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
idleFiber->tcb.SP = CORTEX_M0_STACK_BASE - 0x04;
idleFiber->tcb.LR = (uint32_t) &idle_task;
}
@ -692,7 +692,7 @@ void schedule()
}
else
{
// Ensure the stack allocation of the fiber being scheduled out is large enough
// Ensure the stack allocation of the fiber being scheduled out is large enough
verify_stack_size(oldFiber);
// Schedule in the new fiber.

View file

@ -0,0 +1,143 @@
/**
* Class definition for MicroBitLightSensor.
*
* This is an object that interleaves light sensing with uBit.display.
*/
#include "MicroBit.h"
/**
* After the startSensing method has been called, this method will be called
* MICROBIT_LIGHT_SENSOR_AN_SET_TIME after.
*
* It will then read from the currently selected channel using the AnalogIn
* that was configured in the startSensing method.
*/
void MicroBitLightSensor::analogReady()
{
this->results[chan] = this->sensePin->read_u16();
analogDisable();
DigitalOut((PinName)(MICROBIT_DISPLAY_COLUMN_START + chan)).write(1);
chan++;
chan = chan % MICROBIT_LIGHT_SENSOR_CHAN_NUM;
}
/**
* Forcibly disables the AnalogIn, otherwise it will remain in possession
* of the GPIO channel it is using, meaning that the display will not be
* able to use a channel (COL).
*
* This is required as per PAN 3, details of which can be found here:
*
* https://www.nordicsemi.com/eng/nordic/download_resource/24634/5/88440387
*/
void MicroBitLightSensor::analogDisable()
{
NRF_ADC->ENABLE = ADC_ENABLE_ENABLE_Disabled;
NRF_ADC->CONFIG = (ADC_CONFIG_RES_8bit << ADC_CONFIG_RES_Pos) |
(ADC_CONFIG_INPSEL_SupplyTwoThirdsPrescaling << ADC_CONFIG_INPSEL_Pos) |
(ADC_CONFIG_REFSEL_VBG << ADC_CONFIG_REFSEL_Pos) |
(ADC_CONFIG_PSEL_Disabled << ADC_CONFIG_PSEL_Pos) |
(ADC_CONFIG_EXTREFSEL_None << ADC_CONFIG_EXTREFSEL_Pos);
}
/**
* The method that is invoked by sending MICROBIT_DISPLAY_EVT_LIGHT_SENSE
* using the id MICROBIT_ID_DISPLAY.
*
* If you want to manually trigger this method, you should use the event bus.
*
* @note This is currently too churny, and allocates a lot of stuff on the stack
* however, this makes this chunk of code platform agnostic in mbed land.
*/
void MicroBitLightSensor::startSensing(MicroBitEvent)
{
for(int rowCount = 0; rowCount < MICROBIT_DISPLAY_ROW_COUNT; rowCount++)
DigitalOut((PinName)(MICROBIT_DISPLAY_ROW_START + rowCount)).write(0);
PinName currentPin = (PinName)(MICROBIT_DISPLAY_COLUMN_START + chan);
DigitalOut(currentPin).write(1);
DigitalIn(currentPin, PullNone).~DigitalIn();
if(this->sensePin != NULL)
delete this->sensePin;
this->sensePin = new AnalogIn(currentPin);
analogTrigger.attach_us(this, &MicroBitLightSensor::analogReady, MICROBIT_LIGHT_SENSOR_AN_SET_TIME);
}
/**
* Constructor.
* Create a representation of the light sensor
*/
MicroBitLightSensor::MicroBitLightSensor() : analogTrigger()
{
this->chan = 0;
uBit.MessageBus.listen(MICROBIT_ID_DISPLAY, MICROBIT_DISPLAY_EVT_LIGHT_SENSE, this, &MicroBitLightSensor::startSensing, MESSAGE_BUS_LISTENER_IMMEDIATE);
this->sensePin = NULL;
}
/**
* This method returns a summed average of the three sections of the display.
*
* A section is defined as:
* ___________________
* | 1 | | 2 | | 3 |
* |___|___|___|___|___|
* | | | | | |
* |___|___|___|___|___|
* | 2 | | 3 | | 1 |
* |___|___|___|___|___|
* | | | | | |
* |___|___|___|___|___|
* | 3 | | 1 | | 2 |
* |___|___|___|___|___|
*
* Where each number represents a different section on the 5 x 5 matrix display.
*
* @return returns a value in the range 0 - 100 where 0 is dark, and 100
* is very bright
*
* @note currently returns a value in the range 0 - 100 where 0 is dark, and 100
* is very bright perhaps we should normalise the returned values into an SI unit!
* TODO.
*/
int MicroBitLightSensor::read()
{
int sum = 0;
for(int i = 0; i < MICROBIT_LIGHT_SENSOR_CHAN_NUM; i++)
sum += results[i];
int average = sum / MICROBIT_LIGHT_SENSOR_CHAN_NUM;
average = min(average, MICROBIT_LIGHT_SENSOR_MAX_VALUE);
average = max(average, MICROBIT_LIGHT_SENSOR_MIN_VALUE);
int inverted = (MICROBIT_LIGHT_SENSOR_MAX_VALUE - average) + MICROBIT_LIGHT_SENSOR_MIN_VALUE;
int normalised = ((inverted - MICROBIT_LIGHT_SENSOR_MIN_VALUE) * 100) / (MICROBIT_LIGHT_SENSOR_MAX_VALUE - MICROBIT_LIGHT_SENSOR_MIN_VALUE);
return normalised;
}
/**
* The destructor restores the default Display Mode and tick speed, and also
* removes the listener from the MessageBus.
*/
MicroBitLightSensor::~MicroBitLightSensor()
{
uBit.MessageBus.ignore(MICROBIT_ID_DISPLAY, MICROBIT_DISPLAY_EVT_LIGHT_SENSE, this, &MicroBitLightSensor::startSensing);
}