Merge branch 'single-heap' into dal-integration

This commit is contained in:
Joe Finney 2018-09-07 17:44:37 +01:00
commit 0c746140a3
4 changed files with 112 additions and 188 deletions

View file

@ -109,25 +109,22 @@ extern uint32_t __etext;
#define FLASH_PROGRAM_END (uint32_t) (&__etext)
#endif
// Enables or disables the MicroBitHeapllocator. Note that if disabled, no reuse of the SRAM normally
// reserved for SoftDevice is possible, and out of memory condition will no longer be trapped...
// i.e. panic() will no longer be triggered on memory full conditions.
#ifndef MICROBIT_HEAP_ALLOCATOR
#define MICROBIT_HEAP_ALLOCATOR 1
//
// If set to '1', this option enables the microbit heap allocator. This supports multiple heaps and interrupt safe operation.
// If set to '0', the standard GCC libc heap allocator is used, which restricts available memory in BLE scenarios, and MessageBus operations
// in ISR contexts will no longer be safe.
//
#ifndef MICROBIT_HEAP_ENABLED
#define MICROBIT_HEAP_ENABLED 1
#endif
// Block size used by the allocator in bytes.
// n.b. Currently only 32 bits (4 bytes) is supported.
#ifndef MICROBIT_HEAP_BLOCK_SIZE
#define MICROBIT_HEAP_BLOCK_SIZE 4
#endif
// The proportion of SRAM available on the mbed heap to reserve for the micro:bit heap.
#ifndef MICROBIT_NESTED_HEAP_SIZE
#define MICROBIT_NESTED_HEAP_SIZE 0.75
#endif
// If defined, reuse any unused SRAM normally reserved for SoftDevice (Nordic's memory resident BLE stack) as heap memory.
// The amount of memory reused depends upon whether or not BLE is enabled using MICROBIT_BLE_ENABLED.
// Set '1' to enable.

View file

@ -51,15 +51,20 @@ DEALINGS IN THE SOFTWARE.
#ifndef MICROBIT_HEAP_ALLOCTOR_H
#define MICROBIT_HEAP_ALLOCTOR_H
#include "mbed.h"
#include "MicroBitConfig.h"
#include <new>
// The maximum number of heap segments that can be created.
#define MICROBIT_MAXIMUM_HEAPS 2
// Flag to indicate that a given block is FREE/USED
// Flag to indicate that a given block is FREE/USED (top bit of a CPU word)
#define MICROBIT_HEAP_BLOCK_FREE 0x80000000
#define MICROBIT_HEAP_BLOCK_SIZE 4
struct HeapDefinition
{
uint32_t *heap_start; // Physical address of the start of this heap.
uint32_t *heap_end; // Physical address of the end of this heap.
};
/**
* Create and initialise a given memory region as for heap storage.
@ -79,89 +84,4 @@ DEALINGS IN THE SOFTWARE.
*/
int microbit_create_heap(uint32_t start, uint32_t end);
/**
* Create and initialise a heap region within the current the heap region specified
* by the linker script.
*
* If the requested amount is not available, then the amount requested will be reduced
* automatically to fit the space available.
*
* @param ratio The proportion of the underlying heap to allocate.
*
* @return MICROBIT_OK on success, or MICROBIT_NO_RESOURCES if the heap could not be allocated.
*/
int microbit_create_nested_heap(float ratio);
/**
* Attempt to allocate a given amount of memory from any of our configured heap areas.
*
* @param size The amount of memory, in bytes, to allocate.
*
* @return A pointer to the allocated memory, or NULL if insufficient memory is available.
*/
void *microbit_malloc(size_t size);
/**
* Release a given area of memory from the heap.
*
* @param mem The memory area to release.
*/
void microbit_free(void *mem);
/*
* Wrapper function to ensure we have an explicit handle on the heap allocator provided
* by our underlying platform.
*
* @param size The amount of memory, in bytes, to allocate.
*
* @return A pointer to the memory allocated. NULL if no memory is available.
*/
inline void *native_malloc(size_t size)
{
return malloc(size);
}
/*
* Wrapper function to ensure we have an explicit handle on the heap allocator provided
* by our underlying platform.
*
* @param p Pointer to the memory to be freed.
*/
inline void native_free(void *p)
{
free(p);
}
/**
* Overrides the 'new' operator globally, and redirects calls to the micro:bit heap allocator.
*/
inline void* operator new(size_t size)
{
return microbit_malloc(size);
}
/**
* Overrides the 'new' operator globally, and redirects calls to the micro:bit theap allocator.
*/
inline void* operator new[](size_t size)
{
return microbit_malloc(size);
}
/**
* Overrides the 'delete' operator globally, and redirects calls to the micro:bit theap allocator.
*/
inline void operator delete(void *ptr)
{
microbit_free(ptr);
}
// Macros to override overrides the 'malloc' and 'delete' functions globally, and redirects calls
// to the micro:bit theap allocator.
#define malloc(X) microbit_malloc( X )
#define free(X) microbit_free( X )
#endif

View file

@ -71,6 +71,10 @@
#define MICROBIT_DEFAULT_PULLMODE YOTTA_CFG_MICROBIT_DAL_DEFAULT_PULLMODE
#endif
#ifdef YOTTA_CFG_MICROBIT_DAL_HEAP_ENABLED
#define MICROBIT_HEAP_ENABLED YOTTA_CFG_MICROBIT_DAL_HEAP_ENABLED
#endif
#ifdef YOTTA_CFG_MICROBIT_DAL_PANIC_ON_HEAP_FULL
#define MICROBIT_PANIC_HEAP_FULL YOTTA_CFG_MICROBIT_DAL_PANIC_ON_HEAP_FULL
#endif

View file

@ -51,17 +51,15 @@ DEALINGS IN THE SOFTWARE.
#include "MicroBitConfig.h"
#include "MicroBitHeapAllocator.h"
#include "MicroBitDevice.h"
#include "MicroBitCompat.h"
#include "ErrorNo.h"
struct HeapDefinition
{
uint32_t *heap_start; // Physical address of the start of this heap.
uint32_t *heap_end; // Physical address of the end of this heap.
};
#if CONFIG_ENABLED(MICROBIT_HEAP_ENABLED)
// A list of all active heap regions, and their dimensions in memory.
HeapDefinition heap[MICROBIT_MAXIMUM_HEAPS] = { };
uint8_t heap_count = 0;
extern "C" int __end__;
#if CONFIG_ENABLED(MICROBIT_DBG) && CONFIG_ENABLED(MICROBIT_HEAP_DBG)
// Diplays a usage summary about a given heap...
@ -90,7 +88,7 @@ void microbit_heap_print(HeapDefinition &heap)
while (block < heap.heap_end)
{
blockSize = *block & ~MICROBIT_HEAP_BLOCK_FREE;
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("[%c:%d] ", *block & MICROBIT_HEAP_BLOCK_FREE ? 'F' : 'U', blockSize*4);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("[%c:%d] ", *block & MICROBIT_HEAP_BLOCK_FREE ? 'F' : 'U', blockSize*MICROBIT_HEAP_BLOCK_SIZE);
if (cols++ == 20)
{
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("\n");
@ -110,8 +108,8 @@ void microbit_heap_print(HeapDefinition &heap)
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("\n");
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("mb_total_free : %d\n", totalFreeBlock*4);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("mb_total_used : %d\n", totalUsedBlock*4);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("mb_total_free : %d\n", totalFreeBlock*MICROBIT_HEAP_BLOCK_SIZE);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("mb_total_used : %d\n", totalUsedBlock*MICROBIT_HEAP_BLOCK_SIZE);
}
@ -126,13 +124,6 @@ void microbit_heap_print()
}
#endif
void microbit_initialise_heap(HeapDefinition &heap)
{
// Simply mark the entire heap as free.
*heap.heap_start = ((uint32_t) heap.heap_end - (uint32_t) heap.heap_start) / MICROBIT_HEAP_BLOCK_SIZE;
*heap.heap_start |= MICROBIT_HEAP_BLOCK_FREE;
}
/**
* Create and initialise a given memory region as for heap storage.
* After this is called, any future calls to malloc, new, free or delete may use the new heap.
@ -151,23 +142,25 @@ void microbit_initialise_heap(HeapDefinition &heap)
*/
int microbit_create_heap(uint32_t start, uint32_t end)
{
HeapDefinition *h = &heap[heap_count];
// Ensure we don't exceed the maximum number of heap segments.
if (heap_count == MICROBIT_MAXIMUM_HEAPS)
return MICROBIT_NO_RESOURCES;
// Sanity check. Ensure range is valid, large enough and word aligned.
if (end <= start || end - start < MICROBIT_HEAP_BLOCK_SIZE*2 || end % 4 != 0 || start % 4 != 0)
if (end <= start || end - start < MICROBIT_HEAP_BLOCK_SIZE*2 || end % MICROBIT_HEAP_BLOCK_SIZE != 0 || start % MICROBIT_HEAP_BLOCK_SIZE != 0)
return MICROBIT_INVALID_PARAMETER;
// Disable IRQ temporarily to ensure no race conditions!
__disable_irq();
// Record the dimensions of this new heap
heap[heap_count].heap_start = (uint32_t *)start;
heap[heap_count].heap_end = (uint32_t *)end;
h->heap_start = (uint32_t *)start;
h->heap_end = (uint32_t *)end;
// Initialise the heap as being completely empty and available for use.
microbit_initialise_heap(heap[heap_count]);
*h->heap_start = MICROBIT_HEAP_BLOCK_FREE | (((uint32_t) h->heap_end - (uint32_t) h->heap_start) / MICROBIT_HEAP_BLOCK_SIZE);
heap_count++;
// Enable Interrupts
@ -180,55 +173,6 @@ int microbit_create_heap(uint32_t start, uint32_t end)
return MICROBIT_OK;
}
/**
* Create and initialise a heap region within the current the heap region specified
* by the linker script.
*
* If the requested amount is not available, then the amount requested will be reduced
* automatically to fit the space available.
*
* @param ratio The proportion of the underlying heap to allocate.
*
* @return MICROBIT_OK on success, or MICROBIT_NO_RESOURCES if the heap could not be allocated.
*/
int microbit_create_nested_heap(float ratio)
{
uint32_t length;
void *p;
if (ratio <= 0.0 || ratio > 1.0)
return MICROBIT_INVALID_PARAMETER;
// Snapshot something at the top of the main heap.
p = native_malloc(sizeof(uint32_t));
// Estimate the size left in our heap, taking care to ensure it lands on a word boundary.
length = (uint32_t) (((float)(MICROBIT_HEAP_END - (uint32_t)p)) * ratio);
length &= 0xFFFFFFFC;
// Release our reference pointer.
native_free(p);
p = NULL;
// Allocate memory for our heap.
// We iteratively reduce the size of memory are allocate until it fits within available space.
while (p == NULL)
{
p = native_malloc(length);
if (p == NULL)
{
length -= 32;
if (length <= 0)
return MICROBIT_NO_RESOURCES;
}
}
uint32_t start = (uint32_t) p;
microbit_create_heap(start, start + length);
return MICROBIT_OK;
}
/**
* Attempt to allocate a given amount of memory from a given heap area.
*
@ -327,42 +271,40 @@ void *microbit_malloc(size_t size, HeapDefinition &heap)
*
* @return A pointer to the allocated memory, or NULL if insufficient memory is available.
*/
void *microbit_malloc(size_t size)
void *malloc(size_t size)
{
static uint8_t initialised = 0;
void *p;
if (!initialised)
{
heap_count = 0;
if(microbit_create_heap((uint32_t)(&__end__), (uint32_t)(MICROBIT_HEAP_END)) == MICROBIT_INVALID_PARAMETER)
microbit_panic(MICROBIT_HEAP_ERROR);
initialised = 1;
}
// Assign the memory from the first heap created that has space.
for (int i=0; i < heap_count; i++)
{
p = microbit_malloc(size, heap[i]);
if (p != NULL)
{
#if CONFIG_ENABLED(MICROBIT_DBG) && CONFIG_ENABLED(MICROBIT_HEAP_DBG)
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("microbit_malloc: ALLOCATED: %d [%p]\n", size, p);
#endif
return p;
}
break;
}
// If we reach here, then either we have no memory available, or our heap spaces
// haven't been initialised. Either way, we try the native allocator.
p = native_malloc(size);
if (p != NULL)
{
#if CONFIG_ENABLED(MICROBIT_DBG) && CONFIG_ENABLED(MICROBIT_HEAP_DBG)
// Keep everything trasparent if we've not been initialised yet
if (heap_count > 0)
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("microbit_malloc: NATIVE ALLOCATED: %d [%p]\n", size, p);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("malloc: ALLOCATED: %d [%p]\n", size, p);
#endif
return p;
}
// We're totally out of options (and memory!).
#if CONFIG_ENABLED(MICROBIT_DBG) && CONFIG_ENABLED(MICROBIT_HEAP_DBG)
// Keep everything transparent if we've not been initialised yet
if (heap_count > 0)
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("microbit_malloc: OUT OF MEMORY [%d]\n", size);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("malloc: OUT OF MEMORY [%d]\n", size);
#endif
#if CONFIG_ENABLED(MICROBIT_PANIC_HEAP_FULL)
@ -377,14 +319,14 @@ void *microbit_malloc(size_t size)
*
* @param mem The memory area to release.
*/
void microbit_free(void *mem)
void free(void *mem)
{
uint32_t *memory = (uint32_t *)mem;
uint32_t *cb = memory-1;
#if CONFIG_ENABLED(MICROBIT_DBG) && CONFIG_ENABLED(MICROBIT_HEAP_DBG)
if (heap_count > 0)
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("microbit_free: %p\n", mem);
if(SERIAL_DEBUG) SERIAL_DEBUG->printf("free: %p\n", mem);
#endif
// Sanity check.
if (memory == NULL)
@ -397,12 +339,73 @@ void microbit_free(void *mem)
{
// The memory block given is part of this heap, so we can simply
// flag that this memory area is now free, and we're done.
if (*cb == 0 || *cb & MICROBIT_HEAP_BLOCK_FREE)
microbit_panic(MICROBIT_HEAP_ERROR);
*cb |= MICROBIT_HEAP_BLOCK_FREE;
return;
}
}
// If we reach here, then the memory is not part of any registered heap.
// Forward it to the native heap allocator, and let nature take its course...
native_free(mem);
microbit_panic(MICROBIT_HEAP_ERROR);
}
void* calloc (size_t num, size_t size)
{
void *mem = malloc(num*size);
if (mem)
memclr(mem, num*size);
return mem;
}
void* realloc (void* ptr, size_t size)
{
void *mem = malloc(size);
// handle the simplest case - no previous memory allocted.
if (ptr != NULL && mem != NULL)
{
// Otherwise we need to copy and free up the old data.
uint32_t *cb = ((uint32_t *)ptr) - 1;
uint32_t blockSize = *cb & ~MICROBIT_HEAP_BLOCK_FREE;
memcpy(mem, ptr, min(blockSize * sizeof(uint32_t), size));
free(ptr);
}
return mem;
}
// make sure the libc allocator is not pulled in
void *_malloc_r(struct _reent *, size_t len)
{
return malloc(len);
}
void _free_r(struct _reent *, void *addr)
{
free(addr);
}
void *
_realloc_r (struct _reent *ptr, void *old, size_t newlen)
{
(void) ptr;
return realloc (old, newlen);
}
#else
int microbit_create_heap(uint32_t start, uint32_t end)
{
(void) start;
(void) end;
return MICROBIT_OK;
}
#endif