An e-compass solution requires knowwlede two pieces of data to provide an accurate heading: - Accurate calibration of the magnetometer hardware so that reliable measurements can be taken. - Knowledge of the pitch and roll of of device, so that the correct components of the X/Y and Z axis sensors of the magnetomer can be used to sense the magnetic field in a horizontal plane regardless of the tilt of the device. This commit represent changes to the MicroBitAccelerometer and MicroBitCompass classes to implemen tthese goals. More specifically, this commit provides: - The introduciton of an interactive calibration 'game', that can rapidly gather all the data required to calibrate the compass. - An improved calibration algorithm based on a Least Mean Squares approach of compass samples, as documened in Freescale Application Note AN4248. - The inclusion of a simple Matrix4 class to enable efficient Least Mean Squares implementation. - A change from asynchronous to synchronous calibration of the compass when first used. This is in repsonse to a feature request for this from users and high level languages using microbit-dal. - Support for detemrining tilt and roll angle in MicroBitAccelerometer - Support for multiple co-ordinate spaces in MicroBitAccelerometer and MicroBitCompass. Data can now be read in either RAW (unaltered) data. MICORBIT_SIMPLE_CARTESIAN (as used previously) or NORTH_EAST_DOWN (the industry convention in mobile phones, tablets and aviation) - Implementation of a tilt compensated algorithm, used when determining device heading.master
parent
de28387ff3
commit
d51b1205f7
@ -0,0 +1,153 @@
|
||||
#ifndef MICROBIT_MATRIX4_H
|
||||
#define MICROBIT_MATRIX4_H
|
||||
|
||||
/**
|
||||
* Class definition for a simple matrix, that is optimised for nx4 or 4xn matrices.
|
||||
*
|
||||
* This class is heavily optimised for these commonly used matrices as used in 3D geometry.
|
||||
* Whilst this class does support basic operations on matrices of any dimension, it is not intended as a
|
||||
* general purpose matrix class as inversion operations are only provided for 4x4 matrices.
|
||||
* For programmers needing more flexible Matrix support, the Matrix and MatrixMath classes from
|
||||
* Ernsesto Palacios provide a good basis:
|
||||
*
|
||||
* https://developer.mbed.org/cookbook/MatrixClass
|
||||
* https://developer.mbed.org/users/Yo_Robot/code/MatrixMath/
|
||||
*/
|
||||
class Matrix4
|
||||
{
|
||||
double *data; // Linear buffer representing the matrix.
|
||||
int rows; // The number of rows in the matrix.
|
||||
int cols; // The number of columns in the matrix.
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor.
|
||||
* Create a matrix of the given size.
|
||||
* @param rows the number of rows in the matrix to be created.
|
||||
* @param cols the number of columns in the matrix to be created.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix4(10, 4); // Creates a Matrix with 10 rows and 4 columns.
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4(int rows, int cols);
|
||||
|
||||
/**
|
||||
* Constructor.
|
||||
* Create a matrix that is an identical copy of the given matrix.
|
||||
* @param matrix The matrix to copy.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
*
|
||||
* Matrix newMatrix(matrix); .
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4(const Matrix4 &matrix);
|
||||
|
||||
/**
|
||||
* Determines the number of columns in this matrix.
|
||||
*
|
||||
* @return The number of columns in the matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* int c = matrix.width();
|
||||
* @endcode
|
||||
*/
|
||||
int width();
|
||||
|
||||
/**
|
||||
* Determines the number of rows in this matrix.
|
||||
*
|
||||
* @return The number of rows in the matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* int r = matrix.height();
|
||||
* @endcode
|
||||
*/
|
||||
int height();
|
||||
|
||||
/**
|
||||
* Reads the matrix element at the given position.
|
||||
*
|
||||
* @param row The row of the element to read
|
||||
* @param col The column of the element to read
|
||||
* @return The value of the matrix element at the given position. NAN is returned if the given index is out of range.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* double v = matrix.get(1,2);
|
||||
* @endcode
|
||||
*/
|
||||
double get(int row, int col);
|
||||
|
||||
/**
|
||||
* Writes the matrix element at the given position.
|
||||
*
|
||||
* @param row The row of the element to write
|
||||
* @param col The column of the element to write
|
||||
* @param v The new value of the element
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.set(1,2,42.0);
|
||||
* @endcode
|
||||
*/
|
||||
void set(int row, int col, double v);
|
||||
|
||||
/**
|
||||
* Transposes this matrix.
|
||||
* @return the resultant matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.transpose();
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 transpose();
|
||||
|
||||
/**
|
||||
* Multiplies this matrix with the given matrix (if possible).
|
||||
* @return the resultant matrix. An empty matrix is returned if the operation canot be completed.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix result = matrixA.multiply(matrixB);
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 multiply(Matrix4 &matrix);
|
||||
|
||||
/**
|
||||
* Performs an optimisaed inversion of a 4x4 matrix.
|
||||
* Only 4x4 matrics are supported by this operation.
|
||||
*
|
||||
* @return the resultant matrix. An empty matrix is returned if the operation canot be completed.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix result = matrixA.invert();
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 invert();
|
||||
|
||||
/**
|
||||
* Prints this matrix to the console.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.print();
|
||||
* @endcode
|
||||
*/
|
||||
void print();
|
||||
|
||||
/**
|
||||
* Destructor.
|
||||
*/
|
||||
~Matrix4();
|
||||
};
|
||||
|
||||
#endif
|
@ -0,0 +1,41 @@
|
||||
#ifndef MICROBIT_COORDINATE_SYSTEM_H
|
||||
#define MICROBIT_COORDINATE_SYSTEM_H
|
||||
|
||||
/**
|
||||
* Co-ordinate systems that can be used.
|
||||
* RAW: Unaltered data. Data will be returned directly from the accelerometer.
|
||||
*
|
||||
* SIMPLE_CARTESIAN: Data will be returned based on an easy to understand alignment, consistent with the cartesian system taught in schools.
|
||||
* When held upright, facing the user:
|
||||
*
|
||||
* /
|
||||
* +--------------------+ z
|
||||
* | |
|
||||
* | ..... |
|
||||
* | * ..... * |
|
||||
* ^ | ..... |
|
||||
* | | |
|
||||
* y +--------------------+ x-->
|
||||
*
|
||||
*
|
||||
* NORTH_EAST_DOWN: Data will be returned based on the industry convention of the North East Down (NED) system.
|
||||
* When held upright, facing the user:
|
||||
*
|
||||
* z
|
||||
* +--------------------+ /
|
||||
* | |
|
||||
* | ..... |
|
||||
* | * ..... * |
|
||||
* ^ | ..... |
|
||||
* | | |
|
||||
* x +--------------------+ y-->
|
||||
*
|
||||
*/
|
||||
enum MicroBitCoordinateSystem
|
||||
{
|
||||
RAW,
|
||||
SIMPLE_CARTESIAN,
|
||||
NORTH_EAST_DOWN
|
||||
};
|
||||
|
||||
#endif
|
@ -0,0 +1,271 @@
|
||||
#include "MicroBit.h"
|
||||
|
||||
/**
|
||||
* Class definition for a simple matrix, optimised for n x 4 or 4 x n matrices.
|
||||
*
|
||||
* This class is heavily optimised for these commonly used matrices as used in 3D geometry,
|
||||
* and is not intended as a general purpose matrix class. For programmers needing more flexible
|
||||
* Matrix support, the mbed Matrix and MatrixMath classes from Ernsesto Palacios provide a good basis:
|
||||
*
|
||||
* https://developer.mbed.org/cookbook/MatrixClass
|
||||
* https://developer.mbed.org/users/Yo_Robot/code/MatrixMath/
|
||||
*/
|
||||
|
||||
/**
|
||||
* Constructor.
|
||||
* Create a matrix of the given size.
|
||||
* @param rows the number of rows in the matrix to be created.
|
||||
* @param cols the number of columns in the matrix to be created.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix4(10, 4); // Creates a Matrix with 10 rows and 4 columns.
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4::Matrix4(int rows, int cols)
|
||||
{
|
||||
this->rows = rows;
|
||||
this->cols = cols;
|
||||
|
||||
int size = rows * cols;
|
||||
|
||||
if (size > 0)
|
||||
data = new double[size];
|
||||
else
|
||||
data = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor.
|
||||
* Create a matrix that is an identicval copy of the given matrix.
|
||||
* @param matrix The matrix to copy.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
*
|
||||
* Matrix newMatrix(matrix); .
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4::Matrix4(const Matrix4 &matrix)
|
||||
{
|
||||
this->rows = matrix.rows;
|
||||
this->cols = matrix.cols;
|
||||
|
||||
int size = rows * cols;
|
||||
|
||||
if (size > 0)
|
||||
{
|
||||
data = new double[size];
|
||||
for (int i = 0; i < size; i++)
|
||||
data[i] = matrix.data[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
data = NULL;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines the number of columns in this matrix.
|
||||
*
|
||||
* @return The number of columns in the matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* int c = matrix.width();
|
||||
* @endcode
|
||||
*/
|
||||
int Matrix4::width()
|
||||
{
|
||||
return cols;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines the number of rows in this matrix.
|
||||
*
|
||||
* @return The number of rows in the matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* int r = matrix.height();
|
||||
* @endcode
|
||||
*/
|
||||
int Matrix4::height()
|
||||
{
|
||||
return rows;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads the matrix element at the given position.
|
||||
*
|
||||
* @param row The row of the element to read
|
||||
* @param col The column of the element to read
|
||||
* @return The value of the matrix element at the given position. NAN is returned if the given index is out of range.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* double v = matrix.get(1,2);
|
||||
* @endcode
|
||||
*/
|
||||
double Matrix4::get(int row, int col)
|
||||
{
|
||||
if (row < 0 || col < 0 || row >= rows || col >= cols)
|
||||
return 0;
|
||||
|
||||
return data[width() * row + col];
|
||||
}
|
||||
|
||||
/**
|
||||
* Writes the matrix element at the given position.
|
||||
*
|
||||
* @param row The row of the element to write
|
||||
* @param col The column of the element to write
|
||||
* @param v The new value of the element
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.set(1,2,42.0);
|
||||
* @endcode
|
||||
*/
|
||||
void Matrix4::set(int row, int col, double v)
|
||||
{
|
||||
if (row < 0 || col < 0 || row >= rows || col >= cols)
|
||||
return;
|
||||
|
||||
data[width() * row + col] = v;
|
||||
}
|
||||
|
||||
/**
|
||||
* Transposes this matrix.
|
||||
* @return the resultant matrix.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.transpose();
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 Matrix4::transpose()
|
||||
{
|
||||
Matrix4 result = Matrix4(cols, rows);
|
||||
|
||||
for (int i = 0; i < width(); i++)
|
||||
for (int j = 0; j < height(); j++)
|
||||
result.set(i, j, get(j, i));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies this matrix with the given matrix (if possible).
|
||||
* @return the resultant matrix. An empty matrix is returned if the operation canot be completed.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix result = matrixA.multiply(matrixB);
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 Matrix4::multiply(Matrix4 &matrix)
|
||||
{
|
||||
if (width() != matrix.height())
|
||||
return Matrix4(0, 0);
|
||||
|
||||
Matrix4 result(height(), matrix.width());
|
||||
|
||||
for (int r = 0; r < result.height(); r++)
|
||||
{
|
||||
for (int c = 0; c < result.width(); c++)
|
||||
{
|
||||
double v = 0.0;
|
||||
|
||||
for (int i = 0; i < width(); i++)
|
||||
v += get(r, i) * matrix.get(i, c);
|
||||
|
||||
result.set(r, c, v);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an optimised inversion of a 4x4 matrix.
|
||||
* Only 4x4 matrices are supported by this operation.
|
||||
*
|
||||
* @return the resultant matrix. An empty matrix is returned if the operation canot be completed.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* Matrix result = matrixA.invert();
|
||||
* @endcode
|
||||
*/
|
||||
Matrix4 Matrix4::invert()
|
||||
{
|
||||
// We only support square matrices of size 4...
|
||||
if (width() != height() || width() != 4)
|
||||
return Matrix4(0, 0);
|
||||
|
||||
Matrix4 result(width(), height());
|
||||
|
||||
result.data[0] = data[5] * data[10] * data[15] - data[5] * data[11] * data[14] - data[9] * data[6] * data[15] + data[9] * data[7] * data[14] + data[13] * data[6] * data[11] - data[13] * data[7] * data[10];
|
||||
result.data[1] = -data[1] * data[10] * data[15] + data[1] * data[11] * data[14] + data[9] * data[2] * data[15] - data[9] * data[3] * data[14] - data[13] * data[2] * data[11] + data[13] * data[3] * data[10];
|
||||
result.data[2] = data[1] * data[6] * data[15] - data[1] * data[7] * data[14] - data[5] * data[2] * data[15] + data[5] * data[3] * data[14] + data[13] * data[2] * data[7] - data[13] * data[3] * data[6];
|
||||
result.data[3] = -data[1] * data[6] * data[11] + data[1] * data[7] * data[10] + data[5] * data[2] * data[11] - data[5] * data[3] * data[10] - data[9] * data[2] * data[7] + data[9] * data[3] * data[6];
|
||||
result.data[4] = -data[4] * data[10] * data[15] + data[4] * data[11] * data[14] + data[8] * data[6] * data[15] - data[8] * data[7] * data[14] - data[12] * data[6] * data[11] + data[12] * data[7] * data[10];
|
||||
result.data[5] = data[0] * data[10] * data[15] - data[0] * data[11] * data[14] - data[8] * data[2] * data[15] + data[8] * data[3] * data[14] + data[12] * data[2] * data[11] - data[12] * data[3] * data[10];
|
||||
result.data[6] = -data[0] * data[6] * data[15] + data[0] * data[7] * data[14] + data[4] * data[2] * data[15] - data[4] * data[3] * data[14] - data[12] * data[2] * data[7] + data[12] * data[3] * data[6];
|
||||
result.data[7] = data[0] * data[6] * data[11] - data[0] * data[7] * data[10] - data[4] * data[2] * data[11] + data[4] * data[3] * data[10] + data[8] * data[2] * data[7] - data[8] * data[3] * data[6];
|
||||
result.data[8] = data[4] * data[9] * data[15] - data[4] * data[11] * data[13] - data[8] * data[5] * data[15] + data[8] * data[7] * data[13] + data[12] * data[5] * data[11] - data[12] * data[7] * data[9];
|
||||
result.data[9] = -data[0] * data[9] * data[15] + data[0] * data[11] * data[13] + data[8] * data[1] * data[15] - data[8] * data[3] * data[13] - data[12] * data[1] * data[11] + data[12] * data[3] * data[9];
|
||||
result.data[10] = data[0] * data[5] * data[15] - data[0] * data[7] * data[13] - data[4] * data[1] * data[15] + data[4] * data[3] * data[13] + data[12] * data[1] * data[7] - data[12] * data[3] * data[5];
|
||||
result.data[11] = -data[0] * data[5] * data[11] + data[0] * data[7] * data[9] + data[4] * data[1] * data[11] - data[4] * data[3] * data[9] - data[8] * data[1] * data[7] + data[8] * data[3] * data[5];
|
||||
result.data[12] = -data[4] * data[9] * data[14] + data[4] * data[10] * data[13] + data[8] * data[5] * data[14] - data[8] * data[6] * data[13] - data[12] * data[5] * data[10] + data[12] * data[6] * data[9];
|
||||
result.data[13] = data[0] * data[9] * data[14] - data[0] * data[10] * data[13] - data[8] * data[1] * data[14] + data[8] * data[2] * data[13] + data[12] * data[1] * data[10] - data[12] * data[2] * data[9];
|
||||
result.data[14] = -data[0] * data[5] * data[14] + data[0] * data[6] * data[13] + data[4] * data[1] * data[14] - data[4] * data[2] * data[13] - data[12] * data[1] * data[6] + data[12] * data[2] * data[5];
|
||||
result.data[15] = data[0] * data[5] * data[10] - data[0] * data[6] * data[9] - data[4] * data[1] * data[10] + data[4] * data[2] * data[9] + data[8] * data[1] * data[6] - data[8] * data[2] * data[5];
|
||||
|
||||
double det = data[0] * result.data[0] + data[1] * result.data[4] + data[2] * result.data[8] + data[3] * result.data[12];
|
||||
|
||||
if (det == 0)
|
||||
return Matrix4(0, 0);
|
||||
|
||||
det = 1.0f / det;
|
||||
|
||||
for (int i = 0; i < 16; i++)
|
||||
result.data[i] *= det;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints this matrix to the console.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* matrix.print();
|
||||
* @endcode
|
||||
*/
|
||||
void Matrix4::print()
|
||||
{
|
||||
for (int r = 0; r < height(); r++)
|
||||
{
|
||||
for (int c = 0; c < width(); c++)
|
||||
{
|
||||
uBit.serial.printf("%d\t", (int)get(r, c));
|
||||
}
|
||||
uBit.serial.printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Destructor.
|
||||
*/
|
||||
Matrix4::~Matrix4()
|
||||
{
|
||||
if (data != NULL)
|
||||
{
|
||||
delete data;
|
||||
data = NULL;
|
||||
}
|
||||
}
|
||||
|