issue #73 highlighted an issue whereby the destruction of an instance
registered as an idle or system component, would result in a hardfault.
This was due to not deregistering idle or system callbacks.
This patch has been applied to all components currently in use by the
idle or system callbacks.
An e-compass solution requires knowwlede two pieces of data to provide an
accurate heading:
- Accurate calibration of the magnetometer hardware so that reliable
measurements can be taken.
- Knowledge of the pitch and roll of of device, so that the correct
components of the X/Y and Z axis sensors of the magnetomer can be used
to sense the magnetic field in a horizontal plane regardless of the tilt
of the device.
This commit represent changes to the MicroBitAccelerometer and MicroBitCompass
classes to implemen tthese goals. More specifically, this commit provides:
- The introduciton of an interactive calibration 'game', that can rapidly
gather all the data required to calibrate the compass.
- An improved calibration algorithm based on a Least Mean Squares approach of
compass samples, as documened in Freescale Application Note AN4248.
- The inclusion of a simple Matrix4 class to enable efficient Least Mean
Squares implementation.
- A change from asynchronous to synchronous calibration of the compass when
first used. This is in repsonse to a feature request for this from users
and high level languages using microbit-dal.
- Support for detemrining tilt and roll angle in MicroBitAccelerometer
- Support for multiple co-ordinate spaces in MicroBitAccelerometer and
MicroBitCompass. Data can now be read in either RAW (unaltered) data.
MICORBIT_SIMPLE_CARTESIAN (as used previously) or NORTH_EAST_DOWN
(the industry convention in mobile phones, tablets and aviation)
- Implementation of a tilt compensated algorithm, used when determining
device heading.
NOP/clamping behaviour out of teh micro:bit runtime and into the glue layers of higher level
languages.
- Updates to many functions to provide explicut return codes.
- Updates to many functions to remove heuristic calidation (NOP/clamping/defaults)
- Updates to ErrorNo.h to provide clearer return values, and place return values in a better scope
- Updates to MicroBitDisplay to use enums where appropriate.
First functionally complete BLE profile, matching BLE speicfication v1.6.
More specifically, the following services are now functional:
- AccelerometerService
- MeganetometerService
- EventService
- TemperatureServide
- IOPinService
- DFUService
- ButtonService
- LEDService
Also, updates to underlying device drivers to enable greater configurability:
- MicroBitCompass now supports variable sample rates and temperature sensing
- MicroBitAccelerometer now supports variable sample rates and ranges
- MicroBitThermometer introduced
- MicroBitMessageBus adapted to permit enumeration and block removal of listeners
Finally, MicroBit DFU Service has been changed to the new UUIDs specificed in v1.6 of BLE spec.
This release contains a widespread set of updates and optimisations to the micro:bit
runtime, with a view to reducing the SRAM footprint of the whole system. This is to
provide as much usable HEAP storage for application programs as possible.
Specific updates and optimisations include:
- Additional compilation flags to allow the core micro:bit runtime to be configured.
These are defined in MicroBitConfig.h
- A custom heap allocator. This is now included for two reasons:
1) To provide a simple mechanism to to utilise both the mbed heap space and other memory
regions (such as unused memory in the SoftDevice region) as a single virtual heap.
2) To address some issues that have been noted that are attributable to heap fragmentation.
The micro:bit heap allocator has a simple algorithm, but one that is chosen to respond
well to the relativelt high 'heap churn' found in the micro:bit environment.
All micro:bit components and user programs now use this heap allocator trasparently.
- Updates to BLE services to remove persistent references to their GATT services. This consumes
vast amounts SRAM, rather unecessarily. Instead only handles to the relevant GATT characteristics
are now stored. This specifically includes:
+ MicroBitDFUService
+ MicroBitEventService
+ DeviceInformationService
- Updates to the Fiber scheduler to save SRAM. More specifically:
+ Removed the need to hold an empty processor context to intialise fibers.
+ The IDLE fiber now runs without a stack
+ fiber stacks are now only created when a fiber is descheduled for the first time, thereby reducing heap churn.
+ the 'main' fiber is now recycled into the fiber_pool if it leaves app_main()
+ fibers created through invoke() now only maintains the necessary part of teh parent stack that is needed, thereby
reducing the stack size of spawned fibers.
- Updates to the Message Bus to reduce the overall memory footprint of processing events. More specifically:
+ Event handlers are now always called using invoke(), such that non-blocking event handlers no longer need
a dedicated fiber to execute - thereby saving SRAM and processor time.
+ Processing of events from the event queue is now rate paced. Events only continue to be processed as long as there
are no fibers on the run queue. i.e. event processing is no longer greedy, thereby reducing the number of fibers
created on the runqueue.
- Updates to BLUEZOENE code to bring up core BLE services even if they are not enabled by default. This allows
programs that do not require BLE to operate to benefit from the full range of SRAM, whilst still allowing the
device to be programmed over BLE.
- Updates to the Soft Device initialisation configuration, reducing the size of the GATT table held in the top 1.8K
of its 8K memory region to around 800 bytes. This is sufficient to run the default set of BLE services on the micro:bit
so the additional memory is configured as HEAP storage by MicroBitHeapAllocator.
- Minor changes to a range of components to integrate with the above changes.
+ rename of free() to release() in DynamicPWM to avoid namespace collision with MicroBitHeap free()
+ rename of fork_on_block to invoke() to enhance readbility.
- Many code cleanups and updates to out of date comments.
This is the first commit of the microbit-dal on GitHub.
This repository contains the runtime, which is a light
weight operating system developed by Lancaster University.