676 lines
21 KiB
C++
676 lines
21 KiB
C++
/*
|
|
* The underlying Nordic libraries that support BLE do not compile cleanly with the stringent GCC settings we employ
|
|
* If we're compiling under GCC, then we suppress any warnings generated from this code (but not the rest of the DAL)
|
|
* The ARM cc compiler is more tolerant. We don't test __GNUC__ here to detect GCC as ARMCC also typically sets this
|
|
* as a compatability option, but does not support the options used...
|
|
*/
|
|
#if !defined(__arm)
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
#endif
|
|
|
|
#include "MicroBit.h"
|
|
|
|
#include "nrf_soc.h"
|
|
|
|
/*
|
|
* Return to our predefined compiler settings.
|
|
*/
|
|
#if !defined(__arm)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/**
|
|
* custom function for panic for malloc & new due to scoping issue.
|
|
*/
|
|
void panic(int statusCode)
|
|
{
|
|
uBit.panic(statusCode);
|
|
}
|
|
|
|
/**
|
|
* Callback that performs a hard reset when a BLE GAP disconnect occurs.
|
|
* Only used when an explicit reset is invoked locally whilst a BLE connection is in progress.
|
|
* This allows for a clean diconnect of the BLE connection before resetting.
|
|
*/
|
|
void bleDisconnectionResetCallback(const Gap::DisconnectionCallbackParams_t *)
|
|
{
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
/**
|
|
* Perform a hard reset of the micro:bit.
|
|
* If BLE connected, then try to signal a disconnect first
|
|
*/
|
|
void
|
|
microbit_reset()
|
|
{
|
|
if(uBit.ble && uBit.ble->getGapState().connected) {
|
|
uBit.ble->onDisconnection(bleDisconnectionResetCallback);
|
|
|
|
uBit.ble->gap().disconnect(Gap::REMOTE_USER_TERMINATED_CONNECTION);
|
|
// We should be reset by the disconnection callback, so we wait to
|
|
// allow that to happen. If it doesn't happen, then we fall through to the
|
|
// hard rest here. (For example there is a race condition where
|
|
// the remote device disconnects between us testing the connection
|
|
// state and re-setting the disconnection callback).
|
|
uBit.sleep(1000);
|
|
}
|
|
NVIC_SystemReset();
|
|
}
|
|
|
|
void bleDisconnectionCallback(const Gap::DisconnectionCallbackParams_t *)
|
|
{
|
|
uBit.ble->startAdvertising();
|
|
}
|
|
|
|
|
|
/**
|
|
* Constructor.
|
|
* Create a representation of a MicroBit device as a global singleton.
|
|
* @param messageBus callback function to receive MicroBitMessageBus events.
|
|
*
|
|
* Exposed objects:
|
|
* @code
|
|
* uBit.systemTicker; //the Ticker callback that performs routines like updating the display.
|
|
* uBit.MessageBus; //The message bus where events are fired.
|
|
* uBit.display; //The display object for the LED matrix.
|
|
* uBit.buttonA; //The buttonA object for button a.
|
|
* uBit.buttonB; //The buttonB object for button b.
|
|
* uBit.buttonAB; //The buttonAB object for button a+b multi press.
|
|
* uBit.resetButton; //The resetButton used for soft resets.
|
|
* uBit.accelerometer; //The object that represents the inbuilt accelerometer
|
|
* uBit.compass; //The object that represents the inbuilt compass(magnetometer)
|
|
* uBit.io.P*; //Where P* is P0 to P16, P19 & P20 on the edge connector
|
|
* @endcode
|
|
*/
|
|
MicroBit::MicroBit() :
|
|
flags(0x00),
|
|
i2c(MICROBIT_PIN_SDA, MICROBIT_PIN_SCL),
|
|
serial(USBTX, USBRX),
|
|
MessageBus(),
|
|
display(MICROBIT_ID_DISPLAY, MICROBIT_DISPLAY_WIDTH, MICROBIT_DISPLAY_HEIGHT),
|
|
buttonA(MICROBIT_ID_BUTTON_A,MICROBIT_PIN_BUTTON_A, MICROBIT_BUTTON_SIMPLE_EVENTS),
|
|
buttonB(MICROBIT_ID_BUTTON_B,MICROBIT_PIN_BUTTON_B, MICROBIT_BUTTON_SIMPLE_EVENTS),
|
|
buttonAB(MICROBIT_ID_BUTTON_AB,MICROBIT_ID_BUTTON_A,MICROBIT_ID_BUTTON_B),
|
|
accelerometer(MICROBIT_ID_ACCELEROMETER, MMA8653_DEFAULT_ADDR),
|
|
compass(MICROBIT_ID_COMPASS, MAG3110_DEFAULT_ADDR),
|
|
thermometer(MICROBIT_ID_THERMOMETER),
|
|
io(MICROBIT_ID_IO_P0,MICROBIT_ID_IO_P1,MICROBIT_ID_IO_P2,
|
|
MICROBIT_ID_IO_P3,MICROBIT_ID_IO_P4,MICROBIT_ID_IO_P5,
|
|
MICROBIT_ID_IO_P6,MICROBIT_ID_IO_P7,MICROBIT_ID_IO_P8,
|
|
MICROBIT_ID_IO_P9,MICROBIT_ID_IO_P10,MICROBIT_ID_IO_P11,
|
|
MICROBIT_ID_IO_P12,MICROBIT_ID_IO_P13,MICROBIT_ID_IO_P14,
|
|
MICROBIT_ID_IO_P15,MICROBIT_ID_IO_P16,MICROBIT_ID_IO_P19,
|
|
MICROBIT_ID_IO_P20),
|
|
bleManager(),
|
|
radio(MICROBIT_ID_RADIO),
|
|
ble(NULL)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Post constructor initialisation method.
|
|
* After *MUCH* pain, it's noted that the BLE stack can't be brought up in a
|
|
* static context, so we bring it up here rather than in the constructor.
|
|
* n.b. This method *must* be called in main() or later, not before.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uBit.init();
|
|
* @endcode
|
|
*/
|
|
void MicroBit::init()
|
|
{
|
|
//add the display to the systemComponent array
|
|
addSystemComponent(&uBit.display);
|
|
|
|
//add the compass and accelerometer to the idle array
|
|
addIdleComponent(&uBit.accelerometer);
|
|
addIdleComponent(&uBit.compass);
|
|
addIdleComponent(&uBit.MessageBus);
|
|
|
|
// Seed our random number generator
|
|
seedRandom();
|
|
|
|
tickPeriod = MICROBIT_DEFAULT_TICK_PERIOD;
|
|
|
|
// Start refreshing the Matrix Display
|
|
systemTicker.attach_us(this, &MicroBit::systemTick, tickPeriod * 1000);
|
|
|
|
// Register our compass calibration algorithm.
|
|
MessageBus.listen(MICROBIT_ID_COMPASS, MICROBIT_COMPASS_EVT_CALIBRATE, this, &MicroBit::compassCalibrator, MESSAGE_BUS_LISTENER_IMMEDIATE);
|
|
}
|
|
|
|
/**
|
|
* Performs a simple game that in parallel, calibrates the compass.
|
|
* This function is executed automatically when the user requests a compass bearing, and compass calibration is required.
|
|
* This function is, by design, synchronous and only returns once calibration is complete.
|
|
*/
|
|
void MicroBit::compassCalibrator(MicroBitEvent)
|
|
{
|
|
struct Point
|
|
{
|
|
uint8_t x;
|
|
uint8_t y;
|
|
uint8_t on;
|
|
};
|
|
|
|
const int PERIMETER_POINTS = 12;
|
|
const int PIXEL1_THRESHOLD = 200;
|
|
const int PIXEL2_THRESHOLD = 800;
|
|
|
|
Matrix4 X(PERIMETER_POINTS, 4);
|
|
Point perimeter[PERIMETER_POINTS] = {{1,0,0}, {2,0,0}, {3,0,0}, {4,1,0}, {4,2,0}, {4,3,0}, {3,4,0}, {2,4,0}, {1,4,0}, {0,3,0}, {0,2,0}, {0,1,0}};
|
|
Point cursor = {2,2,0};
|
|
|
|
MicroBitImage img(5,5);
|
|
MicroBitImage smiley("0,255,0,255,0\n0,255,0,255,0\n0,0,0,0,0\n255,0,0,0,255\n0,255,255,255,0\n");
|
|
int samples = 0;
|
|
|
|
// Firstly, we need to take over the display. Ensure all active animations are paused.
|
|
display.stopAnimation();
|
|
display.scrollAsync("DRAW A CIRCLE");
|
|
for (int i=0; i<110; i++)
|
|
{
|
|
if (buttonA.isPressed() || buttonB.isPressed())
|
|
{
|
|
break;
|
|
}
|
|
sleep(100);
|
|
}
|
|
|
|
display.stopAnimation();
|
|
display.clear();
|
|
|
|
while(samples < PERIMETER_POINTS)
|
|
{
|
|
// update our model of the flash status of the user controlled pixel.
|
|
cursor.on = (cursor.on + 1) % 4;
|
|
|
|
// take a snapshot of the current accelerometer data.
|
|
int x = uBit.accelerometer.getX();
|
|
int y = uBit.accelerometer.getY();
|
|
|
|
// Deterine the position of the user controlled pixel on the screen.
|
|
if (x < -PIXEL2_THRESHOLD)
|
|
cursor.x = 0;
|
|
else if (x < -PIXEL1_THRESHOLD)
|
|
cursor.x = 1;
|
|
else if (x > PIXEL2_THRESHOLD)
|
|
cursor.x = 4;
|
|
else if (x > PIXEL1_THRESHOLD)
|
|
cursor.x = 3;
|
|
else
|
|
cursor.x = 2;
|
|
|
|
if (y < -PIXEL2_THRESHOLD)
|
|
cursor.y = 0;
|
|
else if (y < -PIXEL1_THRESHOLD)
|
|
cursor.y = 1;
|
|
else if (y > PIXEL2_THRESHOLD)
|
|
cursor.y = 4;
|
|
else if (y > PIXEL1_THRESHOLD)
|
|
cursor.y = 3;
|
|
else
|
|
cursor.y = 2;
|
|
|
|
img.clear();
|
|
|
|
// Turn on any pixels that have been visited.
|
|
for (int i=0; i<PERIMETER_POINTS; i++)
|
|
if (perimeter[i].on)
|
|
img.setPixelValue(perimeter[i].x, perimeter[i].y, 255);
|
|
|
|
// Update the pixel at the users position.
|
|
img.setPixelValue(cursor.x, cursor.y, 255);
|
|
|
|
// Update the buffer to the screen.
|
|
uBit.display.image.paste(img,0,0,0);
|
|
|
|
// test if we need to update the state at the users position.
|
|
for (int i=0; i<PERIMETER_POINTS; i++)
|
|
{
|
|
if (cursor.x == perimeter[i].x && cursor.y == perimeter[i].y && !perimeter[i].on)
|
|
{
|
|
// Record the sample data for later processing...
|
|
X.set(samples, 0, compass.getX(RAW));
|
|
X.set(samples, 1, compass.getY(RAW));
|
|
X.set(samples, 2, compass.getZ(RAW));
|
|
X.set(samples, 3, 1);
|
|
|
|
// Record that this pixel has been visited.
|
|
perimeter[i].on = 1;
|
|
samples++;
|
|
}
|
|
}
|
|
|
|
uBit.sleep(100);
|
|
}
|
|
|
|
// We have enough sample data to make a fairly accurate calibration.
|
|
// We use a Least Mean Squares approximation, as detailed in Freescale application note AN2426.
|
|
|
|
// Firstly, calculate the square of each sample.
|
|
Matrix4 Y(X.height(), 1);
|
|
for (int i = 0; i < X.height(); i++)
|
|
{
|
|
float v = X.get(i, 0)*X.get(i, 0) + X.get(i, 1)*X.get(i, 1) + X.get(i, 2)*X.get(i, 2);
|
|
Y.set(i, 0, v);
|
|
}
|
|
|
|
// Now perform a Least Squares Approximation.
|
|
Matrix4 Alpha = X.multiplyT(X).invert();
|
|
Matrix4 Gamma = X.multiplyT(Y);
|
|
Matrix4 Beta = Alpha.multiply(Gamma);
|
|
|
|
// The result contains the approximate zero point of each axis, but doubled.
|
|
// Halve each sample, and record this as the compass calibration data.
|
|
CompassSample cal ((int)(Beta.get(0,0) / 2), (int)(Beta.get(1,0) / 2), (int)(Beta.get(2,0) / 2));
|
|
compass.setCalibration(cal);
|
|
|
|
// Show a smiley to indicate that we're done, and continue on with the user program.
|
|
display.clear();
|
|
display.print(smiley, 0, 0, 0, 1500);
|
|
display.clear();
|
|
}
|
|
|
|
/**
|
|
* Return the friendly name for this device.
|
|
*
|
|
* @return A string representing the friendly name of this device.
|
|
*/
|
|
ManagedString MicroBit::getName()
|
|
{
|
|
char nameBuffer[MICROBIT_NAME_LENGTH];
|
|
const uint8_t codebook[MICROBIT_NAME_LENGTH][MICROBIT_NAME_CODE_LETTERS] =
|
|
{
|
|
{'z', 'v', 'g', 'p', 't'},
|
|
{'u', 'o', 'i', 'e', 'a'},
|
|
{'z', 'v', 'g', 'p', 't'},
|
|
{'u', 'o', 'i', 'e', 'a'},
|
|
{'z', 'v', 'g', 'p', 't'}
|
|
};
|
|
|
|
// We count right to left, so create a pointer to the end of the buffer.
|
|
char *name = nameBuffer;
|
|
name += MICROBIT_NAME_LENGTH;
|
|
|
|
// Derive our name from the nrf51822's unique ID.
|
|
uint32_t n = NRF_FICR->DEVICEID[1];
|
|
int ld = 1;
|
|
int d = MICROBIT_NAME_CODE_LETTERS;
|
|
int h;
|
|
|
|
for (int i=0; i<MICROBIT_NAME_LENGTH;i++)
|
|
{
|
|
h = (n % d) / ld;
|
|
n -= h;
|
|
d *= MICROBIT_NAME_CODE_LETTERS;
|
|
ld *= MICROBIT_NAME_CODE_LETTERS;
|
|
*--name = codebook[i][h];
|
|
}
|
|
|
|
return ManagedString(nameBuffer, MICROBIT_NAME_LENGTH);
|
|
}
|
|
|
|
/**
|
|
* Return the serial number of this device.
|
|
*
|
|
* @return A string representing the serial number of this device.
|
|
*/
|
|
ManagedString MicroBit::getSerial()
|
|
{
|
|
// We take to 16 bit numbers here, as we want the full range of ID bits, but don't want negative numbers...
|
|
int n1 = NRF_FICR->DEVICEID[1] & 0xffff;
|
|
int n2 = (NRF_FICR->DEVICEID[1] >> 16) & 0xffff;
|
|
|
|
// Simply concat the two numbers.
|
|
ManagedString s1 = ManagedString(n1);
|
|
ManagedString s2 = ManagedString(n2);
|
|
|
|
return s1 + s2;
|
|
}
|
|
|
|
/**
|
|
* Will reset the micro:bit when called.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uBit.reset();
|
|
* @endcode
|
|
*/
|
|
void MicroBit::reset()
|
|
{
|
|
microbit_reset();
|
|
}
|
|
|
|
/**
|
|
* Delay for the given amount of time.
|
|
* If the scheduler is running, this will deschedule the current fiber and perform
|
|
* a power efficent, concurrent sleep operation.
|
|
* If the scheduler is disabled or we're running in an interrupt context, this
|
|
* will revert to a busy wait.
|
|
*
|
|
* @note Values of below below the scheduling period (typical 6ms) tend to lose resolution.
|
|
*
|
|
* @param milliseconds the amount of time, in ms, to wait for. This number cannot be negative.
|
|
* @return MICROBIT_OK on success, MICROBIT_INVALID_PARAMETER milliseconds is less than zero.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uBit.sleep(20); //sleep for 20ms
|
|
* @endcode
|
|
*/
|
|
int MicroBit::sleep(int milliseconds)
|
|
{
|
|
//sanity check, we can't time travel... (yet?)
|
|
if(milliseconds < 0)
|
|
return MICROBIT_INVALID_PARAMETER;
|
|
|
|
if (flags & MICROBIT_FLAG_SCHEDULER_RUNNING)
|
|
fiber_sleep(milliseconds);
|
|
else
|
|
wait_ms(milliseconds);
|
|
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate a random number in the given range.
|
|
* We use a simple Galois LFSR random number generator here,
|
|
* as a Galois LFSR is sufficient for our applications, and much more lightweight
|
|
* than the hardware random number generator built int the processor, which takes
|
|
* a long time and uses a lot of energy.
|
|
*
|
|
* KIDS: You shouldn't use this is the real world to generte cryptographic keys though...
|
|
* have a think why not. :-)
|
|
*
|
|
* @param max the upper range to generate a number for. This number cannot be negative
|
|
* @return A random, natural number between 0 and the max-1. Or MICROBIT_INVALID_VALUE (defined in ErrorNo.h) if max is <= 0.
|
|
*
|
|
* Example:
|
|
* @code
|
|
* uBit.random(200); //a number between 0 and 199
|
|
* @endcode
|
|
*/
|
|
int MicroBit::random(int max)
|
|
{
|
|
uint32_t m, result;
|
|
|
|
//return MICROBIT_INVALID_VALUE if max is <= 0...
|
|
if(max <= 0)
|
|
return MICROBIT_INVALID_PARAMETER;
|
|
|
|
// Our maximum return value is actually one less than passed
|
|
max--;
|
|
|
|
do {
|
|
m = (uint32_t)max;
|
|
result = 0;
|
|
do {
|
|
// Cycle the LFSR (Linear Feedback Shift Register).
|
|
// We use an optimal sequence with a period of 2^32-1, as defined by Bruce Schneier here (a true legend in the field!),
|
|
// For those interested, it's documented in his paper:
|
|
// "Pseudo-Random Sequence Generator for 32-Bit CPUs: A fast, machine-independent generator for 32-bit Microprocessors"
|
|
// https://www.schneier.com/paper-pseudorandom-sequence.html
|
|
uint32_t rnd = randomValue;
|
|
|
|
rnd = ((((rnd >> 31)
|
|
^ (rnd >> 6)
|
|
^ (rnd >> 4)
|
|
^ (rnd >> 2)
|
|
^ (rnd >> 1)
|
|
^ rnd)
|
|
& 0x0000001)
|
|
<< 31 )
|
|
| (rnd >> 1);
|
|
|
|
randomValue = rnd;
|
|
|
|
result = ((result << 1) | (rnd & 0x00000001));
|
|
} while(m >>= 1);
|
|
} while (result > (uint32_t)max);
|
|
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/**
|
|
* Seed our a random number generator (RNG).
|
|
* We use the NRF51822 in built cryptographic random number generator to seed a Galois LFSR.
|
|
* We do this as the hardware RNG is relatively high power, and use the the BLE stack internally,
|
|
* with a less than optimal application interface. A Galois LFSR is sufficient for our
|
|
* applications, and much more lightweight.
|
|
*/
|
|
void MicroBit::seedRandom()
|
|
{
|
|
randomValue = 0;
|
|
|
|
if(uBit.ble)
|
|
{
|
|
// If Bluetooth is enabled, we need to go through the Nordic software to safely do this.
|
|
uint32_t result = sd_rand_application_vector_get((uint8_t*)&randomValue, sizeof(randomValue));
|
|
|
|
// If we couldn't get the random bytes then at least make the seed non-zero.
|
|
if (result != NRF_SUCCESS)
|
|
randomValue = 0xBBC5EED;
|
|
}
|
|
else
|
|
{
|
|
// Othwerwise we can access the hardware RNG directly.
|
|
|
|
// Start the Random number generator. No need to leave it running... I hope. :-)
|
|
NRF_RNG->TASKS_START = 1;
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
{
|
|
// Clear the VALRDY EVENT
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
|
|
// Wait for a number ot be generated.
|
|
while(NRF_RNG->EVENTS_VALRDY == 0);
|
|
|
|
randomValue = (randomValue << 8) | ((int) NRF_RNG->VALUE);
|
|
}
|
|
|
|
// Disable the generator to save power.
|
|
NRF_RNG->TASKS_STOP = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Seed our pseudo random number generator (PRNG) using the given 32-bit value.
|
|
*/
|
|
void MicroBit::seedRandom(uint32_t seed)
|
|
{
|
|
randomValue = seed;
|
|
}
|
|
|
|
|
|
/**
|
|
* Periodic callback. Used by MicroBitDisplay, FiberScheduler and buttons.
|
|
*/
|
|
void MicroBit::systemTick()
|
|
{
|
|
// Scheduler callback. We do this here just as a single timer is more efficient. :-)
|
|
if (uBit.flags & MICROBIT_FLAG_SCHEDULER_RUNNING)
|
|
scheduler_tick();
|
|
|
|
//work out if any idle components need processing, if so prioritise the idle thread
|
|
for(int i = 0; i < MICROBIT_IDLE_COMPONENTS; i++)
|
|
if(idleThreadComponents[i] != NULL && idleThreadComponents[i]->isIdleCallbackNeeded())
|
|
{
|
|
fiber_flags |= MICROBIT_FLAG_DATA_READY;
|
|
break;
|
|
}
|
|
|
|
//update any components in the systemComponents array
|
|
for(int i = 0; i < MICROBIT_SYSTEM_COMPONENTS; i++)
|
|
if(systemTickComponents[i] != NULL)
|
|
systemTickComponents[i]->systemTick();
|
|
}
|
|
|
|
/**
|
|
* System tasks to be executed by the idle thread when the Micro:Bit isn't busy or when data needs to be read.
|
|
*/
|
|
void MicroBit::systemTasks()
|
|
{
|
|
//call the idleTick member function indiscriminately
|
|
for(int i = 0; i < MICROBIT_IDLE_COMPONENTS; i++)
|
|
if(idleThreadComponents[i] != NULL)
|
|
idleThreadComponents[i]->idleTick();
|
|
|
|
fiber_flags &= ~MICROBIT_FLAG_DATA_READY;
|
|
}
|
|
|
|
/**
|
|
* add a component to the array of components which invocate the systemTick member function during a systemTick
|
|
* @param component The component to add.
|
|
* @return MICROBIT_OK on success. MICROBIT_NO_RESOURCES is returned if further components cannot be supported.
|
|
* @note this will be converted into a dynamic list of components
|
|
*/
|
|
int MicroBit::addSystemComponent(MicroBitComponent *component)
|
|
{
|
|
int i = 0;
|
|
|
|
while(systemTickComponents[i] != NULL && i < MICROBIT_SYSTEM_COMPONENTS)
|
|
i++;
|
|
|
|
if(i == MICROBIT_SYSTEM_COMPONENTS)
|
|
return MICROBIT_NO_RESOURCES;
|
|
|
|
systemTickComponents[i] = component;
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
/**
|
|
* remove a component from the array of components
|
|
* @param component The component to remove.
|
|
* @return MICROBIT_OK on success. MICROBIT_INVALID_PARAMTER is returned if the given component has not been previous added.
|
|
* @note this will be converted into a dynamic list of components
|
|
*/
|
|
int MicroBit::removeSystemComponent(MicroBitComponent *component)
|
|
{
|
|
int i = 0;
|
|
|
|
while(systemTickComponents[i] != component && i < MICROBIT_SYSTEM_COMPONENTS)
|
|
i++;
|
|
|
|
if(i == MICROBIT_SYSTEM_COMPONENTS)
|
|
return MICROBIT_INVALID_PARAMETER;
|
|
|
|
systemTickComponents[i] = NULL;
|
|
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
/**
|
|
* add a component to the array of components which invocate the systemTick member function during a systemTick
|
|
* @param component The component to add.
|
|
* @return MICROBIT_OK on success. MICROBIT_NO_RESOURCES is returned if further components cannot be supported.
|
|
* @note this will be converted into a dynamic list of components
|
|
*/
|
|
int MicroBit::addIdleComponent(MicroBitComponent *component)
|
|
{
|
|
int i = 0;
|
|
|
|
while(idleThreadComponents[i] != NULL && i < MICROBIT_IDLE_COMPONENTS)
|
|
i++;
|
|
|
|
if(i == MICROBIT_IDLE_COMPONENTS)
|
|
return MICROBIT_NO_RESOURCES;
|
|
|
|
idleThreadComponents[i] = component;
|
|
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
/**
|
|
* remove a component from the array of components
|
|
* @param component The component to remove.
|
|
* @return MICROBIT_OK on success. MICROBIT_INVALID_PARAMTER is returned if the given component has not been previous added.
|
|
* @note this will be converted into a dynamic list of components
|
|
*/
|
|
int MicroBit::removeIdleComponent(MicroBitComponent *component)
|
|
{
|
|
int i = 0;
|
|
|
|
while(idleThreadComponents[i] != component && i < MICROBIT_IDLE_COMPONENTS)
|
|
i++;
|
|
|
|
if(i == MICROBIT_IDLE_COMPONENTS)
|
|
return MICROBIT_INVALID_PARAMETER;
|
|
|
|
idleThreadComponents[i] = NULL;
|
|
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
/*
|
|
* Reconfigures the ticker to the given speed in milliseconds.
|
|
* @param speedMs the speed in milliseconds
|
|
* @return MICROBIT_OK on success. MICROBIT_INVALID_PARAMETER is returned if speedUs < 1
|
|
*
|
|
* @note this will also modify the value that is added to ticks in MiroBitFiber:scheduler_tick()
|
|
*/
|
|
int MicroBit::setTickPeriod(int speedMs)
|
|
{
|
|
if(speedMs < 1)
|
|
return MICROBIT_INVALID_PARAMETER;
|
|
|
|
uBit.systemTicker.detach();
|
|
|
|
uBit.systemTicker.attach_us(this, &MicroBit::systemTick, speedMs * 1000);
|
|
|
|
tickPeriod = speedMs;
|
|
|
|
return MICROBIT_OK;
|
|
}
|
|
|
|
/*
|
|
* Returns the currently used tick speed in milliseconds
|
|
*/
|
|
int MicroBit::getTickPeriod()
|
|
{
|
|
return tickPeriod;
|
|
}
|
|
|
|
/**
|
|
* Determine the time since this MicroBit was last reset.
|
|
*
|
|
* @return The time since the last reset, in milliseconds. This will result in overflow after 1.6 months.
|
|
* TODO: handle overflow case.
|
|
*/
|
|
unsigned long MicroBit::systemTime()
|
|
{
|
|
return ticks;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine the version of the micro:bit runtime currently in use.
|
|
*
|
|
* @return A textual description of the currentlt executing micro:bit runtime.
|
|
* TODO: handle overflow case.
|
|
*/
|
|
const char *MicroBit::systemVersion()
|
|
{
|
|
return MICROBIT_DAL_VERSION;
|
|
}
|
|
|
|
/**
|
|
* Triggers a microbit panic where an infinite loop will occur swapping between the panicFace and statusCode if provided.
|
|
*
|
|
* @param statusCode the status code of the associated error. Status codes must be in the range 0-255.
|
|
*/
|
|
void MicroBit::panic(int statusCode)
|
|
{
|
|
//show error and enter infinite while
|
|
uBit.display.error(statusCode);
|
|
}
|